AlshimaaGamalAlsaied commited on
Commit
5996601
·
1 Parent(s): cccbdff
Files changed (1) hide show
  1. app.py +0 -56
app.py CHANGED
@@ -1,60 +1,4 @@
1
- # import gradio as gr
2
- # import torch
3
- # import yolov5
4
 
5
- # # Images
6
- # torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
7
- # torch.hub.download_url_to_file('https://raw.githubusercontent.com/WongKinYiu/yolov7/main/inference/images/image3.jpg', 'image3.jpg')
8
-
9
- # def yolov5_inference(
10
- # image: gr.inputs.Image = None,
11
- # model_path: gr.inputs.Dropdown = None,
12
- # image_size: gr.inputs.Slider = 640,
13
- # conf_threshold: gr.inputs.Slider = 0.25,
14
- # iou_threshold: gr.inputs.Slider = 0.45,
15
- # ):
16
- # """
17
- # YOLOv5 inference function
18
- # Args:
19
- # image: Input image
20
- # model_path: Path to the model
21
- # image_size: Image size
22
- # conf_threshold: Confidence threshold
23
- # iou_threshold: IOU threshold
24
- # Returns:
25
- # Rendered image
26
- # """
27
- # model = yolov5.load(model_path, device="cpu")
28
- # model.conf = conf_threshold
29
- # model.iou = iou_threshold
30
- # results = model([image], size=image_size)
31
- # return results.render()[0]
32
-
33
-
34
- # inputs = [
35
- # gr.inputs.Image(type="pil", label="Input Image"),
36
- # gr.inputs.Dropdown(["yolov5s.pt", "yolov5l.pt", "yolov5x.pt"], label="Model"),
37
- # gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
38
- # gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
39
- # gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
40
- # ]
41
-
42
- # outputs = gr.outputs.Image(type="filepath", label="Output Image")
43
- # title = "YOLOv5"
44
- # description = "YOLOv5 is a family of object detection models pretrained on COCO dataset. This model is a pip implementation of the original YOLOv5 model."
45
-
46
- # examples = [['zidane.jpg', 'yolov5s.pt', 640, 0.25, 0.45], ['image3.jpg', 'yolov5s.pt', 640, 0.25, 0.45]]
47
- # demo_app = gr.Interface(
48
- # fn=yolov5_inference,
49
- # inputs=inputs,
50
- # outputs=outputs,
51
- # title=title,
52
- # examples=examples,
53
- # cache_examples=True,
54
- # live=True,
55
- # theme='huggingface',
56
- # )
57
- # demo_app.launch(debug=True, enable_queue=True)
58
  import gradio as gr
59
  import torch
60
  import yolov5
 
 
 
 
1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import gradio as gr
3
  import torch
4
  import yolov5