FROMAGe / fromage /models.py
alvanli
Add cheese model
1f43fd8
raw
history blame
28.5 kB
from typing import Callable, List, Optional, Tuple, Union
from collections import namedtuple
import json
import glob
import math
import numpy as np
import os
import torch
from torch import Tensor
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from functools import partial
import pickle as pkl
from PIL import Image, UnidentifiedImageError
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from transformers import OPTForCausalLM, GPT2Tokenizer
from transformers import CLIPVisionModel, CLIPVisionConfig
from fromage import utils
class FrozenArgs:
freeze_lm: bool = True
freeze_vm: bool = True
opt_version: str = 'facebook/opt-6.7b'
visual_encoder: str = 'openai/clip-vit-large-patch14'
n_visual_tokens: int = 1
image_embed_dropout_prob: float = 0.0
task: str = 'captioning'
shared_emb_dim: Optional[int] = 256
text_emb_layers: List[int] = [-1]
retrieval_token_idx: int = 0
class FromageModel(nn.Module):
def __init__(self, tokenizer, args: FrozenArgs = FrozenArgs()):
super().__init__()
self.tokenizer = tokenizer
self.feature_extractor = utils.get_feature_extractor_for_model(args.visual_encoder, train=False)
self.image_token = self.tokenizer.cls_token_id
assert args.text_emb_layers != set(args.text_emb_layers), 'text_emb_layers not unique'
self.args = args
opt_version = args.opt_version
visual_encoder = args.visual_encoder
n_visual_tokens = args.n_visual_tokens
print(f"Using {opt_version} for the language model.")
print(f"Using {visual_encoder} for the visual model with {n_visual_tokens} visual tokens.")
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
if 'facebook/opt' in opt_version:
self.lm = OPTForCausalLM.from_pretrained(opt_version)
else:
raise NotImplementedError
self.opt_version = opt_version
if self.args.freeze_lm:
self.lm.eval()
print("Freezing the LM.")
for param in self.lm.parameters():
param.requires_grad = False
else:
self.lm.train()
self.retrieval_token_idx = args.retrieval_token_idx
print(f'Initializing embedding for the retrieval token [RET] (id = {self.retrieval_token_idx}).')
self.lm.resize_token_embeddings(len(tokenizer))
self.input_embeddings = self.lm.get_input_embeddings()
print("Restoring pretrained weights for the visual model.")
if 'clip' in visual_encoder:
self.visual_model = CLIPVisionModel.from_pretrained(visual_encoder)
else:
self.visual_model = AutoModel.from_pretrained(visual_encoder)
if 'clip' in visual_encoder:
hidden_size = self.visual_model.config.hidden_size
else:
raise NotImplementedError
if self.args.freeze_vm:
print("Freezing the VM.")
self.visual_model.eval()
for param in self.visual_model.parameters():
param.requires_grad = False
else:
self.visual_model.train()
self.visual_model_name = visual_encoder
embedding_dim = self.input_embeddings.embedding_dim * self.args.n_visual_tokens
self.text_hidden_fcs = nn.ModuleList([])
if self.args.shared_emb_dim is None:
if len(self.args.text_emb_layers) == 1:
if (self.args.text_emb_layers[0] in [-1, self.lm.config.num_hidden_layers]) and ('bert' not in opt_version):
out_dim = self.lm.config.word_embed_proj_dim
else:
out_dim = self.lm.config.hidden_size
else:
if (-1 in self.args.text_emb_layers) or (self.lm.config.num_hidden_layers in self.args.text_emb_layers) \
and (self.lm.config.word_embed_proj_dim != self.lm.config.hidden_size):
raise ValueError('No projection dim specified but model uses last output layer and an intermediate one (which have different dims).')
else:
out_dim = self.lm.config.hidden_size
else:
out_dim = self.args.shared_emb_dim
for layer_idx in self.args.text_emb_layers:
if (layer_idx == -1 or layer_idx == self.lm.config.num_hidden_layers) and ('bert' not in opt_version):
in_dim = self.lm.config.word_embed_proj_dim
text_fc = [nn.Linear(in_dim, out_dim), nn.Dropout(self.args.text_embed_dropout_prob)]
self.text_hidden_fcs.append(nn.Sequential(*text_fc))
elif layer_idx < self.lm.config.num_hidden_layers:
text_fc = [nn.Linear(self.lm.config.hidden_size, out_dim), nn.Dropout(self.args.text_embed_dropout_prob)]
self.text_hidden_fcs.append(nn.Sequential(*text_fc))
else:
raise ValueError(f'Embedding of layer {layer_idx} was requested but model only has {self.lm.config.num_hidden_layers} layers.')
self.visual_embeddings = nn.Linear(hidden_size, embedding_dim)
self.visual_fc = nn.Linear(hidden_size, out_dim)
self.image_dropout = nn.Dropout(self.args.image_embed_dropout_prob)
def get_visual_embs(self, pixel_values: torch.FloatTensor, mode: str = 'captioning'):
if mode not in ['captioning', 'retrieval']:
raise ValueError(f'mode should be one of ["caption", "retrieval"], got {mode} instead.')
# Extract visual embeddings from the vision encoder.
if 'clip' in self.visual_model_name:
outputs = self.visual_model(pixel_values)
encoder_outputs = outputs.pooler_output
else:
raise NotImplementedError
# Use the correct fc based on function argument.
if mode == 'captioning':
visual_embs = self.visual_embeddings(encoder_outputs) # (2, D * n_visual_tokens)
visual_embs = torch.reshape(visual_embs, (visual_embs.shape[0], self.args.n_visual_tokens, -1))
elif mode == 'retrieval':
visual_embs = self.visual_fc(encoder_outputs) # (2, D * n_visual_tokens)
visual_embs = torch.reshape(visual_embs, (visual_embs.shape[0], 1, -1))
else:
raise NotImplementedError
visual_embs = self.image_dropout(visual_embs)
return visual_embs
def train(self, mode=True):
super(FromageModel, self).train(mode=mode)
# Overwrite train() to ensure Frozen models remain frozen.
if self.args.freeze_lm:
self.lm.eval()
if self.args.freeze_vm:
self.visual_model.eval()
def forward(
self,
pixel_values: torch.FloatTensor,
labels: torch.LongTensor,
caption_len: torch.LongTensor,
mode: str = 'captioning',
concat_captions: bool = False,
input_prefix: Optional[str] = None,
inference: bool = False,
):
visual_embs = self.get_visual_embs(pixel_values, mode)
batch_size, vis_seq_len, _ = visual_embs.shape # vis_seq_len = n_visual_tokens
if labels is not None:
assert labels.shape[0] == batch_size, (visual_embs.shape, labels.shape)
input_embs = self.input_embeddings(labels) # (N, T, D)
last_embedding_idx = caption_len - 1 # -1 to retrieve the token before the eos token
if input_prefix is not None:
prompt_ids = self.tokenizer(input_prefix, add_special_tokens=False, return_tensors="pt").input_ids
prompt_ids = prompt_ids.to(visual_embs.device)
prompt_embs = self.input_embeddings(prompt_ids)
prompt_embs = prompt_embs.repeat(batch_size, 1, 1)
assert prompt_embs.shape[0] == batch_size, prompt_embs.shape
assert prompt_embs.shape[2] == input_embs.shape[2], prompt_embs.shape
assert len(prompt_embs.shape) == 3, prompt_embs.shape
if mode == 'captioning':
# Concat to text embeddings.
condition_seq_len = 0
if input_prefix is None:
# Just add visual embeddings.
input_embs = torch.cat([visual_embs, input_embs], axis=1)
last_embedding_idx += vis_seq_len
condition_seq_len += vis_seq_len
full_labels = torch.zeros(visual_embs.shape[:2], dtype=torch.int64).to(visual_embs.device) - 100
else:
# Add visual and prompt embeddings.
prefix_embs = torch.cat([visual_embs, prompt_embs], axis=1)
input_embs = torch.cat([prefix_embs, input_embs], axis=1)
last_embedding_idx += prefix_embs.shape[1]
condition_seq_len += prefix_embs.shape[1]
full_labels = torch.zeros(prefix_embs.shape[:2], dtype=torch.int64).to(visual_embs.device) - 100
# Mask out embedding tokens in the labels.
full_labels = torch.cat([full_labels, labels], axis=1)
pad_idx = []
for label in full_labels:
for k, token in enumerate(label):
# Mask out retrieval token if it exists.
if token in [self.tokenizer.pad_token_id, self.retrieval_token_idx]:
label[k:] = -100
pad_idx.append(k)
break
if k == len(label) - 1: # No padding found.
pad_idx.append(k + 1)
assert len(pad_idx) == batch_size, (len(pad_idx), batch_size)
bs, seq_len, embs_dim = input_embs.shape
if concat_captions:
assert len(input_embs.shape) == 3, input_embs
assert len(full_labels.shape) == 2, full_labels
assert batch_size % 2 == 0
all_concat_input_embs = []
all_concat_labels = []
# Rearrange embeddings and labels (and their padding) to concatenate captions.
for i in range(batch_size // 2):
first_idx = i * 2
second_idx = first_idx + 1
first_emb = input_embs[first_idx, :pad_idx[first_idx], :]
first_labels = full_labels[first_idx, :pad_idx[first_idx]]
first_padding = input_embs[first_idx, pad_idx[first_idx]:, :]
first_labels_padding = full_labels[first_idx, pad_idx[first_idx]:]
second_emb = input_embs[second_idx, :pad_idx[second_idx], :]
second_labels = full_labels[second_idx, :pad_idx[second_idx]]
second_padding = input_embs[second_idx, pad_idx[second_idx]:, :]
second_labels_padding = full_labels[second_idx, pad_idx[second_idx]:]
assert torch.all(first_labels_padding == -100), first_labels_padding
assert torch.all(second_labels_padding == -100), second_labels_padding
concat_input_embs = torch.cat([first_emb, second_emb, first_padding, second_padding], axis=0) # (T*2, 768)
concat_labels = torch.cat([first_labels, second_labels, first_labels_padding, second_labels_padding], axis=0) # (T*2, 768)
all_concat_input_embs.append(concat_input_embs)
all_concat_labels.append(concat_labels)
# Pad to max length.
input_embs = torch.stack(all_concat_input_embs, axis=0) # (N/2, T*2, 768)
full_labels = torch.stack(all_concat_labels, axis=0) # (N/2, T*2, 768)
assert input_embs.shape == (bs // 2, seq_len * 2, embs_dim), input_embs.shape
assert full_labels.shape == (bs // 2, seq_len * 2), full_labels.shape
output = self.lm(inputs_embeds=input_embs,
labels=full_labels,
output_hidden_states=True)
elif mode == 'retrieval':
full_labels = torch.clone(labels)
if input_prefix is not None:
print(f'Adding prefix "{input_prefix}" to retrieval.')
# Add prompt embeddings.
prefix_embs = prompt_embs
input_embs = torch.cat([prefix_embs, input_embs], axis=1)
last_embedding_idx += prefix_embs.shape[1]
full_labels = torch.cat([
torch.zeros(prefix_embs.shape[:2], dtype=torch.int64).to(labels.device) - 100,
full_labels
], axis=1)
pad_idx = []
for label in full_labels:
for k, token in enumerate(label):
if token == self.tokenizer.pad_token_id:
label[k:] = -100
pad_idx.append(k)
break
if k == len(label) - 1: # No padding found.
pad_idx.append(k + 1)
assert len(pad_idx) == batch_size, (len(pad_idx), batch_size)
output = self.lm(inputs_embeds=input_embs,
labels=full_labels,
output_hidden_states=True)
else:
raise NotImplementedError
last_embedding = None
last_output_logit = None
hidden_states = []
if mode == 'retrieval':
if self.args.shared_emb_dim is not None:
for idx, fc_layer in zip(self.args.text_emb_layers, self.text_hidden_fcs):
hidden_states.append(fc_layer(output.hidden_states[idx])) # (N, seq_len, 2048)
else:
for idx in self.args.text_emb_layers:
hidden_states.append(output.hidden_states[idx])
# Add hidden states together.
last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1)
if not concat_captions:
last_embedding = torch.stack([last_hidden_state[i, last_embedding_idx[i], :] for i in range(batch_size)], axis=0) # (N, D)
last_output_logit = torch.stack([output.logits[i, last_embedding_idx[i] - 1, :] for i in range(batch_size)], axis=0) # (N, D)
else:
# Concatenate two captioning examples together.
all_last_embedding = []
all_last_output_logit = []
for i in range(batch_size // 2):
first_last_embedding_idx, second_last_embedding_idx = all_last_embedding_idx[i]
first_last_embedding = last_hidden_state[i, first_last_embedding_idx, :] # (N, D)
first_last_output_logit = output.logits[i, first_last_embedding_idx - 1, :] # (N, D)
second_last_embedding = last_hidden_state[i, second_last_embedding_idx, :] # (N, D)
second_last_output_logit = output.logits[i, second_last_embedding_idx - 1, :] # (N, D)
all_last_embedding.append(first_last_embedding)
all_last_embedding.append(second_last_embedding)
all_last_output_logit.append(first_last_output_logit)
all_last_output_logit.append(second_last_output_logit)
last_embedding = torch.stack(all_last_embedding)
last_output_logit = torch.stack(all_last_output_logit)
# Compute retrieval loss.
assert visual_embs.shape[1] == 1, visual_embs.shape
visual_embs = visual_embs[:, 0, :]
visual_embs = visual_embs / visual_embs.norm(dim=1, keepdim=True)
last_embedding = last_embedding / last_embedding.norm(dim=1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
visual_embs = logit_scale * visual_embs
elif mode == 'captioning':
pass
else:
raise NotImplementedError
return output, full_labels, last_embedding, last_output_logit, visual_embs
def generate(self, embeddings = torch.FloatTensor, max_len: int = 32,
temperature: float = 0.0, top_p: float = 1.0, min_word_tokens: int = 0,
ret_scale_factor: float = 1.0, filter_value: float = -float('Inf')):
"""Runs greedy decoding and returns generated captions.
Args:
embeddings: Input condition that the model uses for autoregressive generation.
max_len: Maximum number of tokens to generate.
temperature: Used to modulate logit distribution.
top_p: If set to < 1, the smallest set of tokens with highest probabilities that add up to top_p or higher are kept for generation.
min_word_tokens: Minimum number of words to generate before allowing a [RET] output.
ret_scale_factor: Proportion to scale [RET] token logits by. A higher value may increase the probability of the model generating [RET] outputs.
filter_value: Value to assign to tokens that should never be generated.
Outputs:
out: (N, T) int32 sequence of output tokens.
output_embeddings: (N, T, 256) sequence of text output embeddings.
"""
self.lm.eval()
with torch.no_grad(): # no tracking history
batch_size, s, _ = embeddings.shape
# init output with image tokens
out = None
past_key_values = None
output_embeddings = []
output_logits = []
for i in range(max_len):
if 'opt' in self.opt_version:
output = self.lm(inputs_embeds=embeddings, use_cache=False, output_hidden_states=True)
else:
if i == 0:
output = self.lm(inputs_embeds=embeddings, use_cache=True, past_key_values=None, output_hidden_states=True)
else:
output = self.lm(input_ids=out[:, -1:], use_cache=True, past_key_values=past_key_values, output_hidden_states=True)
# Collect and sum the hidden states.
hidden_states = []
if self.args.shared_emb_dim is not None:
for idx, fc_layer in zip(self.args.text_emb_layers, self.text_hidden_fcs):
hidden_states.append(fc_layer(output.hidden_states[idx])) # (N, seq_len, 2048)
else:
for idx in self.args.text_emb_layers:
hidden_states.append(output.hidden_states[idx])
# Add hidden states together.
last_hidden_state = torch.stack(hidden_states, dim=-1).sum(dim=-1) # (N, T, 256)
last_embedding = last_hidden_state / last_hidden_state.norm(dim=-1, keepdim=True)
output_embeddings.append(last_embedding)
logits = output.logits[:, -1, :] # (N, vocab_size)
if top_p == 1.0:
logits = logits.cpu()
output_logits.append(logits)
if self.retrieval_token_idx != -1 and self.retrieval_token_idx is not None:
if i < min_word_tokens:
# Eliminate probability of generating [RET] if this is earlier than min_word_tokens.
logits[:, self.retrieval_token_idx] = filter_value
else:
# Multiply by scaling factor.
logits[:, self.retrieval_token_idx] = logits[:, self.retrieval_token_idx] * ret_scale_factor
past_key_values = output.past_key_values
if temperature == 0.0:
if top_p != 1.0:
raise ValueError('top_p cannot be set if temperature is 0 (greedy decoding).')
next_token = torch.argmax(logits, keepdim=True, dim=-1) # (N, 1)
else:
logits = logits / temperature
# Apply top-p filtering.
if top_p < 1.0:
assert top_p > 0, f'top_p should be above 0, got {top_p} instead.'
sorted_logits, sorted_indices = torch.sort(logits, descending=True) # (N, D) and (N, D)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # (N, D)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
for j in range(sorted_indices.shape[0]):
indices_to_remove = sorted_indices[j, sorted_indices_to_remove[j, :]]
logits[j, indices_to_remove] = filter_value
token_weights = logits.exp() # (N, vocab_size)
next_token = torch.multinomial(token_weights, 1) # (N, 1)
next_token = next_token.long().to(embeddings.device)
if out is not None:
out = torch.cat([out, next_token], dim=-1)
else:
out = next_token
if 'opt' in self.opt_version:
next_embedding = self.input_embeddings(next_token)
embeddings = torch.cat([embeddings, next_embedding], dim=1)
elif (self.tokenizer.eos_token_id and (next_token == self.tokenizer.eos_token_id).all()):
# End of generation.
break
return out, output_embeddings, output_logits
class Fromage(nn.Module):
def __init__(self, tokenizer, model_args: Optional[FrozenArgs] = None,
path_array: Optional[List[str]] = None, emb_matrix: Optional[torch.tensor] = None):
super().__init__()
self.model = FromageModel(tokenizer, model_args)
self.path_array = path_array
self.emb_matrix = emb_matrix
def __call__(self, images: Tensor, tgt_tokens: Optional[Tensor] = None, caption_len: Optional[Tensor] = None,
generate: bool = False, num_words: int = 32, temperature: float = 1.0, top_p: float = 1.0,
ret_scale_factor: float = 1.0, min_word_tokens: int = 0,
mode: str = 'captioning', concat_captions: bool = False,
input_prefix: Optional[str] = None, inference: bool = False) -> Tensor:
if generate:
return self.model.generate(images, num_words, temperature=temperature, top_p=top_p,
min_word_tokens=min_word_tokens, ret_scale_factor=ret_scale_factor)
else:
output = self.model(
pixel_values = images,
labels = tgt_tokens,
caption_len = caption_len,
mode = mode,
concat_captions = concat_captions,
input_prefix = input_prefix,
inference = inference)
return output
def generate_for_images_and_texts(
self, prompts: List, num_words: int = 0, ret_scale_factor: float = 1.0, top_p: float = 1.0, temperature: float = 0.0,
max_num_rets: int = 1):
"""
Encode prompts into embeddings.
Args:
prompts: List of interleaved PIL.Image.Image and strings representing input to the model.
num_words: Maximum number of words to generate for. If num_words = 0, the model will run its forward pass and return the outputs.
ret_scale_factor: Proportion to scale [RET] token logits by. A higher value may increase the probability of the model generating [RET] outputs.
top_p: If set to < 1, the smallest set of tokens with highest probabilities that add up to top_p or higher are kept for generation.
temperature: Used to modulate logit distribution.
max_num_rets: Maximum number of images to return in one generation pass.
Returns:
return_outputs: List consisting of either str or List[PIL.Image.Image] objects, representing image-text interleaved model outputs.
"""
input_embs = []
input_ids = []
add_bos = True
for i, p in enumerate(prompts):
if type(p) == Image.Image:
# Encode as image.
pixel_values = utils.get_pixel_values_for_model(self.model.feature_extractor, p)
pixel_values = pixel_values.to(device=self.model.logit_scale.device, dtype=self.model.logit_scale.dtype)
pixel_values = pixel_values[None, ...]
visual_embs = self.model.get_visual_embs(pixel_values, mode='captioning') # (1, n_visual_tokens, D)
input_embs.append(visual_embs)
elif type(p) == str:
text_ids = self.model.tokenizer(p, add_special_tokens=True, return_tensors="pt").input_ids.to(self.model.logit_scale.device)
if not add_bos:
# Remove <bos> tag.
text_ids = text_ids[:, 1:]
else:
# Only add <bos> once.
add_bos = False
text_embs = self.model.input_embeddings(text_ids) # (1, T, D)
input_embs.append(text_embs)
input_ids.append(text_ids)
else:
raise ValueError(f'Input prompts should be either PIL.Image.Image or str types, got {type(p)} instead.')
input_embs = torch.cat(input_embs, dim=1)
input_ids = torch.cat(input_ids, dim=1)
if num_words == 0:
generated_ids = input_ids
outputs = self.model.lm(inputs_embeds=input_embs, use_cache=False, output_hidden_states=True)
# Map outputs to embeddings, so we can retrieve embeddings from the [RET] tokens.
out = []
for x, fc in zip(self.model.args.text_emb_layers, self.model.text_hidden_fcs):
out.append(fc(outputs.hidden_states[x]))
embeddings = torch.stack(out, dim=-1).sum(dim=-1)
embeddings = embeddings / embeddings.norm(dim=-1, keepdim=True) # (N, T, 256)
elif num_words > 0:
generated_ids, generated_embeddings, _ = self.model.generate(input_embs, num_words,
temperature=temperature, top_p=top_p, ret_scale_factor=ret_scale_factor)
embeddings = generated_embeddings[-1][:, input_embs.shape[1]:]
# Truncate to newline.
newline_token_id = self.model.tokenizer('\n', add_special_tokens=False).input_ids[0]
trunc_idx = 0
for j in range(generated_ids.shape[1]):
if generated_ids[0, j] == newline_token_id:
trunc_idx = j
break
if trunc_idx > 0:
generated_ids = generated_ids[:, :trunc_idx]
embeddings = embeddings[:, :trunc_idx]
else:
raise ValueError
# Save outputs as an interleaved list.
return_outputs = []
# Find up to max_num_rets [RET] tokens, and their corresponding scores.
all_ret_idx = [i for i, x in enumerate(generated_ids[0, :] == self.model.retrieval_token_idx) if x][:max_num_rets]
seen_image_idx = [] # Avoid showing the same image multiple times.
last_ret_idx = 0
if len(all_ret_idx) == 0:
# No [RET] tokens.
caption = self.model.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return_outputs.append(utils.truncate_caption(caption))
else:
for ret_idx in all_ret_idx:
ret_emb = embeddings[:, ret_idx, :]
scores = self.emb_matrix @ ret_emb.T
# Downweight seen images.
for seen_idx in seen_image_idx:
scores[seen_idx, :] -= 1000
# Get the top 3 images for each image.
_, top_image_idx = scores.squeeze().topk(3)
image_outputs = []
for img_idx in top_image_idx:
# Find the first image that does not error out.
try:
seen_image_idx.append(img_idx)
img = utils.get_image_from_url(self.path_array[img_idx])
image_outputs.append(img)
if len(image_outputs) == max_num_rets:
break
except UnidentifiedImageError:
pass
caption = self.model.tokenizer.batch_decode(generated_ids[:, last_ret_idx:ret_idx], skip_special_tokens=True)[0]
last_ret_idx = ret_idx + 1
return_outputs.append(utils.truncate_caption(caption) + ' [RET]')
return_outputs.append(image_outputs)
return return_outputs
def load_fromage(model_dir: str, ckpt_path: str) -> Fromage:
model_args_path = os.path.join(model_dir, 'model_args.json')
model_ckpt_path = os.path.join(ckpt_path)
embs_paths = [s for s in glob.glob(os.path.join(model_dir, 'cc3m_embeddings*.pkl'))]
if not os.path.exists(model_args_path):
raise ValueError(f'model_args.json does not exist in {model_dir}.')
if not os.path.exists(model_ckpt_path):
raise ValueError(f'pretrained_ckpt.pth.tar does not exist in {model_dir}.')
if len(embs_paths) == 0:
raise ValueError(f'cc3m_embeddings_*.pkl files do not exist in {model_dir}.')
# Load embeddings.
# Construct embedding matrix for nearest neighbor lookup.
path_array = []
emb_matrix = []
# These were precomputed for all CC3M images with `model.get_visual_embs(image, mode='retrieval')`.
for p in embs_paths:
with open(p, 'rb') as wf:
train_embs_data = pkl.load(wf)
path_array.extend(train_embs_data['paths'])
emb_matrix.append(train_embs_data['embeddings'])
emb_matrix = np.concatenate(emb_matrix, axis=0)
# Number of paths should be equal to number of embeddings.
assert len(path_array) == emb_matrix.shape[0], (len(path_array), emb_matrix.shape[0])
with open(model_args_path, 'r') as f:
model_kwargs = json.load(f)
# Initialize tokenizer.
tokenizer = GPT2Tokenizer.from_pretrained(model_kwargs['opt_version'])
tokenizer.pad_token = tokenizer.eos_token
# Add special tokens to the model to enable [RET].
tokenizer.add_special_tokens({"cls_token": "<|image|>"})
tokenizer.add_tokens('[RET]')
ret_token_idx = tokenizer('[RET]', add_special_tokens=False).input_ids
assert len(ret_token_idx) == 1, ret_token_idx
model_kwargs['retrieval_token_idx'] = ret_token_idx[0]
args = namedtuple('args', model_kwargs)(**model_kwargs)
# Initialize model for inference.
model = Fromage(tokenizer, args, path_array=path_array, emb_matrix=emb_matrix)
model = model.eval()
model = model.bfloat16()
model = model.cuda()
# Load pretrained linear mappings and [RET] embeddings.
checkpoint = torch.load(model_ckpt_path)
model.load_state_dict(checkpoint['state_dict'], strict=False)
with torch.no_grad():
model.model.input_embeddings.weight[model.model.retrieval_token_idx, :].copy_(checkpoint['state_dict']['ret_input_embeddings.weight'].cpu().detach())
logit_scale = model.model.logit_scale.exp()
emb_matrix = torch.tensor(emb_matrix, dtype=logit_scale.dtype).to(logit_scale.device)
emb_matrix = emb_matrix / emb_matrix.norm(dim=1, keepdim=True)
emb_matrix = logit_scale * emb_matrix
model.emb_matrix = emb_matrix
return model