File size: 14,569 Bytes
560a1b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# Based on a file from https://github.com/rinongal/StyleGAN-nada.

# ==========================================================================================
#
# Adobe’s modifications are Copyright 2023 Adobe Research. All rights reserved.
# Adobe’s modifications are licensed under the Adobe Research License. To view a copy of the license, visit
# LICENSE.md.
#
# ==========================================================================================

import clip
import torch
from torchvision.transforms import transforms
import numpy as np
from PIL import Image

from expansion_utils.text_templates import imagenet_templates, part_templates

# TODO: get rid of unused stuff in this class
class CLIPLoss(torch.nn.Module):
    def __init__(self, device, lambda_direction=1., lambda_patch=0., lambda_global=0., lambda_manifold=0.,
                 lambda_texture=0., patch_loss_type='mae', direction_loss_type='cosine', clip_model='ViT-B/32'):
        super(CLIPLoss, self).__init__()

        self.device = device
        self.model, clip_preprocess = clip.load(clip_model, device=self.device)

        self.clip_preprocess = clip_preprocess

        self.preprocess = transforms.Compose(
            [transforms.Normalize(mean=[-1.0, -1.0, -1.0],
                                  std=[2.0, 2.0, 2.0])] +  # Un-normalize from [-1.0, 1.0] (GAN output) to [0, 1].
            clip_preprocess.transforms[:2] +  # to match CLIP input scale assumptions
            clip_preprocess.transforms[4:])  # + skip convert PIL to tensor

        self.target_directions_cache = {}
        self.patch_text_directions = None

        self.patch_loss = DirectionLoss(patch_loss_type)
        self.direction_loss = DirectionLoss(direction_loss_type)
        self.patch_direction_loss = torch.nn.CosineSimilarity(dim=2)

        self.lambda_global = lambda_global
        self.lambda_patch = lambda_patch
        self.lambda_direction = lambda_direction
        self.lambda_manifold = lambda_manifold
        self.lambda_texture = lambda_texture

        self.src_text_features = None
        self.target_text_features = None
        self.angle_loss = torch.nn.L1Loss()

        self.model_cnn, preprocess_cnn = clip.load("RN50", device=self.device)
        self.preprocess_cnn = transforms.Compose(
            [transforms.Normalize(mean=[-1.0, -1.0, -1.0],
                                  std=[2.0, 2.0, 2.0])] +  # Un-normalize from [-1.0, 1.0] (GAN output) to [0, 1].
            preprocess_cnn.transforms[:2] +  # to match CLIP input scale assumptions
            preprocess_cnn.transforms[4:])  # + skip convert PIL to tensor

        self.model.requires_grad_(False)
        self.model_cnn.requires_grad_(False)

        self.texture_loss = torch.nn.MSELoss()

    def tokenize(self, strings: list):
        return clip.tokenize(strings).to(self.device)

    def encode_text(self, tokens: list) -> torch.Tensor:
        return self.model.encode_text(tokens)

    def encode_images(self, images: torch.Tensor) -> torch.Tensor:
        images = self.preprocess(images).to(self.device)
        return self.model.encode_image(images)

    def encode_images_with_cnn(self, images: torch.Tensor) -> torch.Tensor:
        images = self.preprocess_cnn(images).to(self.device)
        return self.model_cnn.encode_image(images)

    def distance_with_templates(self, img: torch.Tensor, class_str: str, templates=imagenet_templates) -> torch.Tensor:

        text_features = self.get_text_features(class_str, templates)
        image_features = self.get_image_features(img)

        similarity = image_features @ text_features.T

        return 1. - similarity

    def get_text_features(self, class_str: str, templates=imagenet_templates, norm: bool = True) -> torch.Tensor:
        template_text = self.compose_text_with_templates(class_str, templates)

        tokens = clip.tokenize(template_text).to(self.device)

        text_features = self.encode_text(tokens).detach()

        if norm:
            text_features /= text_features.norm(dim=-1, keepdim=True)

        return text_features

    def get_image_features(self, img: torch.Tensor, norm: bool = True) -> torch.Tensor:
        image_features = self.encode_images(img)

        if norm:
            image_features /= image_features.clone().norm(dim=-1, keepdim=True)

        return image_features

    def compute_text_direction(self, source_class: str, target_class: str) -> torch.Tensor:
        with torch.no_grad():
            source_features = self.get_text_features(source_class)
            target_features = self.get_text_features(target_class)

            text_direction = (target_features - source_features).mean(axis=0, keepdim=True)
            text_direction /= text_direction.norm(dim=-1, keepdim=True)

        return text_direction

    def compute_img2img_direction(self, source_images: torch.Tensor, target_images: list) -> torch.Tensor:
        with torch.no_grad():
            src_encoding = self.get_image_features(source_images)
            src_encoding = src_encoding.mean(dim=0, keepdim=True)

            target_encodings = []
            for target_img in target_images:
                preprocessed = self.clip_preprocess(Image.open(target_img)).unsqueeze(0).to(self.device)

                encoding = self.model.encode_image(preprocessed)
                encoding /= encoding.norm(dim=-1, keepdim=True)

                target_encodings.append(encoding)

            target_encoding = torch.cat(target_encodings, axis=0)
            target_encoding = target_encoding.mean(dim=0, keepdim=True)

            direction = target_encoding - src_encoding
            direction /= direction.norm(dim=-1, keepdim=True)

        return direction

    def set_text_features(self, source_class: str, target_class: str) -> None:
        source_features = self.get_text_features(source_class).mean(axis=0, keepdim=True)
        self.src_text_features = source_features / source_features.norm(dim=-1, keepdim=True)

        target_features = self.get_text_features(target_class).mean(axis=0, keepdim=True)
        self.target_text_features = target_features / target_features.norm(dim=-1, keepdim=True)

    def clip_angle_loss(self, src_img: torch.Tensor, source_class: str, target_img: torch.Tensor,
                        target_class: str) -> torch.Tensor:
        if self.src_text_features is None:
            self.set_text_features(source_class, target_class)

        cos_text_angle = self.target_text_features @ self.src_text_features.T
        text_angle = torch.acos(cos_text_angle)

        src_img_features = self.get_image_features(src_img).unsqueeze(2)
        target_img_features = self.get_image_features(target_img).unsqueeze(1)

        cos_img_angle = torch.clamp(target_img_features @ src_img_features, min=-1.0, max=1.0)
        img_angle = torch.acos(cos_img_angle)

        text_angle = text_angle.unsqueeze(0).repeat(img_angle.size()[0], 1, 1)
        cos_text_angle = cos_text_angle.unsqueeze(0).repeat(img_angle.size()[0], 1, 1)

        return self.angle_loss(cos_img_angle, cos_text_angle)

    def compose_text_with_templates(self, text: str, templates=imagenet_templates) -> list:
        return [template.format(text) for template in templates]

    def clip_directional_loss(self, src_img: torch.Tensor, source_classes: np.ndarray, target_img: torch.Tensor,
                              target_classes: np.ndarray) -> torch.Tensor:

        target_directions = []
        for key in zip(source_classes, target_classes):
            if key not in self.target_directions_cache.keys():
                new_direction = self.compute_text_direction(*key)
                self.target_directions_cache[key] = new_direction

            target_directions.append(self.target_directions_cache[key])
        target_directions = torch.cat(target_directions)

        src_encoding = self.get_image_features(src_img)
        target_encoding = self.get_image_features(target_img)

        edit_direction = (target_encoding - src_encoding)
        if edit_direction.sum() == 0:
            target_encoding = self.get_image_features(target_img + 1e-6)
            edit_direction = (target_encoding - src_encoding)

        edit_direction /= (edit_direction.clone().norm(dim=-1, keepdim=True))

        return self.direction_loss(edit_direction, target_directions).sum()

    def global_clip_loss(self, img: torch.Tensor, text) -> torch.Tensor:
        if not isinstance(text, list):
            text = [text]

        tokens = clip.tokenize(text).to(self.device)
        image = self.preprocess(img)

        logits_per_image, _ = self.model(image, tokens)

        return (1. - logits_per_image / 100).mean()

    def random_patch_centers(self, img_shape, num_patches, size):
        batch_size, channels, height, width = img_shape

        half_size = size // 2
        patch_centers = np.concatenate(
            [np.random.randint(half_size, width - half_size, size=(batch_size * num_patches, 1)),
             np.random.randint(half_size, height - half_size, size=(batch_size * num_patches, 1))], axis=1)

        return patch_centers

    def generate_patches(self, img: torch.Tensor, patch_centers, size):
        batch_size = img.shape[0]
        num_patches = len(patch_centers) // batch_size
        half_size = size // 2

        patches = []

        for batch_idx in range(batch_size):
            for patch_idx in range(num_patches):
                center_x = patch_centers[batch_idx * num_patches + patch_idx][0]
                center_y = patch_centers[batch_idx * num_patches + patch_idx][1]

                patch = img[batch_idx:batch_idx + 1, :, center_y - half_size:center_y + half_size,
                        center_x - half_size:center_x + half_size]

                patches.append(patch)

        patches = torch.cat(patches, axis=0)

        return patches

    def patch_scores(self, img: torch.Tensor, class_str: str, patch_centers, patch_size: int) -> torch.Tensor:

        parts = self.compose_text_with_templates(class_str, part_templates)
        tokens = clip.tokenize(parts).to(self.device)
        text_features = self.encode_text(tokens).detach()

        patches = self.generate_patches(img, patch_centers, patch_size)
        image_features = self.get_image_features(patches)

        similarity = image_features @ text_features.T

        return similarity

    def clip_patch_similarity(self, src_img: torch.Tensor, source_class: str, target_img: torch.Tensor,
                              target_class: str) -> torch.Tensor:
        patch_size = 196  # TODO remove magic number

        patch_centers = self.random_patch_centers(src_img.shape, 4, patch_size)  # TODO remove magic number

        src_scores = self.patch_scores(src_img, source_class, patch_centers, patch_size)
        target_scores = self.patch_scores(target_img, target_class, patch_centers, patch_size)

        return self.patch_loss(src_scores, target_scores)

    def patch_directional_loss(self, src_img: torch.Tensor, source_class: str, target_img: torch.Tensor,
                               target_class: str) -> torch.Tensor:

        if self.patch_text_directions is None:
            src_part_classes = self.compose_text_with_templates(source_class, part_templates)
            target_part_classes = self.compose_text_with_templates(target_class, part_templates)

            parts_classes = list(zip(src_part_classes, target_part_classes))

            self.patch_text_directions = torch.cat(
                [self.compute_text_direction(pair[0], pair[1]) for pair in parts_classes], dim=0)

        patch_size = 510  # TODO remove magic numbers

        patch_centers = self.random_patch_centers(src_img.shape, 1, patch_size)

        patches = self.generate_patches(src_img, patch_centers, patch_size)
        src_features = self.get_image_features(patches)

        patches = self.generate_patches(target_img, patch_centers, patch_size)
        target_features = self.get_image_features(patches)

        edit_direction = (target_features - src_features)
        edit_direction /= edit_direction.clone().norm(dim=-1, keepdim=True)

        cosine_dists = 1. - self.patch_direction_loss(edit_direction.unsqueeze(1),
                                                      self.patch_text_directions.unsqueeze(0))

        patch_class_scores = cosine_dists * (edit_direction @ self.patch_text_directions.T).softmax(dim=-1)

        return patch_class_scores.mean()

    def cnn_feature_loss(self, src_img: torch.Tensor, target_img: torch.Tensor) -> torch.Tensor:
        src_features = self.encode_images_with_cnn(src_img)
        target_features = self.encode_images_with_cnn(target_img)

        return self.texture_loss(src_features, target_features)

    def forward(self, src_img: torch.Tensor, source_class: str, target_img: torch.Tensor, target_class: str,
                texture_image: torch.Tensor = None):
        clip_loss = 0.0

        if self.lambda_global:
            clip_loss += self.lambda_global * self.global_clip_loss(target_img, [f"a {target_class}"])

        if self.lambda_patch:  # IMO Same directional loss but run on patches
            clip_loss += self.lambda_patch * self.patch_directional_loss(src_img, source_class, target_img,
                                                                         target_class)

        if self.lambda_direction:  # The directional loss used in the paper
            clip_loss += self.lambda_direction * self.clip_directional_loss(src_img, source_class, target_img,
                                                                            target_class)

        if self.lambda_manifold:  # Compute angels of text and image directions and do L1
            clip_loss += self.lambda_manifold * self.clip_angle_loss(src_img, source_class, target_img, target_class)

        if self.lambda_texture and (texture_image is not None):  # L2 on features extracted by a CNN
            clip_loss += self.lambda_texture * self.cnn_feature_loss(texture_image, target_img)

        return clip_loss


class DirectionLoss(torch.nn.Module):

    def __init__(self, loss_type='mse'):
        super(DirectionLoss, self).__init__()

        self.loss_type = loss_type

        self.loss_func = {
            'mse': torch.nn.MSELoss,
            'cosine': torch.nn.CosineSimilarity,
            'mae': torch.nn.L1Loss
        }[loss_type]()

    def forward(self, x, y):
        if self.loss_type == "cosine":
            return 1. - self.loss_func(x, y)

        return self.loss_func(x, y)