Spaces:
Runtime error
Runtime error
File size: 14,569 Bytes
560a1b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
# Based on a file from https://github.com/rinongal/StyleGAN-nada.
# ==========================================================================================
#
# Adobe’s modifications are Copyright 2023 Adobe Research. All rights reserved.
# Adobe’s modifications are licensed under the Adobe Research License. To view a copy of the license, visit
# LICENSE.md.
#
# ==========================================================================================
import clip
import torch
from torchvision.transforms import transforms
import numpy as np
from PIL import Image
from expansion_utils.text_templates import imagenet_templates, part_templates
# TODO: get rid of unused stuff in this class
class CLIPLoss(torch.nn.Module):
def __init__(self, device, lambda_direction=1., lambda_patch=0., lambda_global=0., lambda_manifold=0.,
lambda_texture=0., patch_loss_type='mae', direction_loss_type='cosine', clip_model='ViT-B/32'):
super(CLIPLoss, self).__init__()
self.device = device
self.model, clip_preprocess = clip.load(clip_model, device=self.device)
self.clip_preprocess = clip_preprocess
self.preprocess = transforms.Compose(
[transforms.Normalize(mean=[-1.0, -1.0, -1.0],
std=[2.0, 2.0, 2.0])] + # Un-normalize from [-1.0, 1.0] (GAN output) to [0, 1].
clip_preprocess.transforms[:2] + # to match CLIP input scale assumptions
clip_preprocess.transforms[4:]) # + skip convert PIL to tensor
self.target_directions_cache = {}
self.patch_text_directions = None
self.patch_loss = DirectionLoss(patch_loss_type)
self.direction_loss = DirectionLoss(direction_loss_type)
self.patch_direction_loss = torch.nn.CosineSimilarity(dim=2)
self.lambda_global = lambda_global
self.lambda_patch = lambda_patch
self.lambda_direction = lambda_direction
self.lambda_manifold = lambda_manifold
self.lambda_texture = lambda_texture
self.src_text_features = None
self.target_text_features = None
self.angle_loss = torch.nn.L1Loss()
self.model_cnn, preprocess_cnn = clip.load("RN50", device=self.device)
self.preprocess_cnn = transforms.Compose(
[transforms.Normalize(mean=[-1.0, -1.0, -1.0],
std=[2.0, 2.0, 2.0])] + # Un-normalize from [-1.0, 1.0] (GAN output) to [0, 1].
preprocess_cnn.transforms[:2] + # to match CLIP input scale assumptions
preprocess_cnn.transforms[4:]) # + skip convert PIL to tensor
self.model.requires_grad_(False)
self.model_cnn.requires_grad_(False)
self.texture_loss = torch.nn.MSELoss()
def tokenize(self, strings: list):
return clip.tokenize(strings).to(self.device)
def encode_text(self, tokens: list) -> torch.Tensor:
return self.model.encode_text(tokens)
def encode_images(self, images: torch.Tensor) -> torch.Tensor:
images = self.preprocess(images).to(self.device)
return self.model.encode_image(images)
def encode_images_with_cnn(self, images: torch.Tensor) -> torch.Tensor:
images = self.preprocess_cnn(images).to(self.device)
return self.model_cnn.encode_image(images)
def distance_with_templates(self, img: torch.Tensor, class_str: str, templates=imagenet_templates) -> torch.Tensor:
text_features = self.get_text_features(class_str, templates)
image_features = self.get_image_features(img)
similarity = image_features @ text_features.T
return 1. - similarity
def get_text_features(self, class_str: str, templates=imagenet_templates, norm: bool = True) -> torch.Tensor:
template_text = self.compose_text_with_templates(class_str, templates)
tokens = clip.tokenize(template_text).to(self.device)
text_features = self.encode_text(tokens).detach()
if norm:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features
def get_image_features(self, img: torch.Tensor, norm: bool = True) -> torch.Tensor:
image_features = self.encode_images(img)
if norm:
image_features /= image_features.clone().norm(dim=-1, keepdim=True)
return image_features
def compute_text_direction(self, source_class: str, target_class: str) -> torch.Tensor:
with torch.no_grad():
source_features = self.get_text_features(source_class)
target_features = self.get_text_features(target_class)
text_direction = (target_features - source_features).mean(axis=0, keepdim=True)
text_direction /= text_direction.norm(dim=-1, keepdim=True)
return text_direction
def compute_img2img_direction(self, source_images: torch.Tensor, target_images: list) -> torch.Tensor:
with torch.no_grad():
src_encoding = self.get_image_features(source_images)
src_encoding = src_encoding.mean(dim=0, keepdim=True)
target_encodings = []
for target_img in target_images:
preprocessed = self.clip_preprocess(Image.open(target_img)).unsqueeze(0).to(self.device)
encoding = self.model.encode_image(preprocessed)
encoding /= encoding.norm(dim=-1, keepdim=True)
target_encodings.append(encoding)
target_encoding = torch.cat(target_encodings, axis=0)
target_encoding = target_encoding.mean(dim=0, keepdim=True)
direction = target_encoding - src_encoding
direction /= direction.norm(dim=-1, keepdim=True)
return direction
def set_text_features(self, source_class: str, target_class: str) -> None:
source_features = self.get_text_features(source_class).mean(axis=0, keepdim=True)
self.src_text_features = source_features / source_features.norm(dim=-1, keepdim=True)
target_features = self.get_text_features(target_class).mean(axis=0, keepdim=True)
self.target_text_features = target_features / target_features.norm(dim=-1, keepdim=True)
def clip_angle_loss(self, src_img: torch.Tensor, source_class: str, target_img: torch.Tensor,
target_class: str) -> torch.Tensor:
if self.src_text_features is None:
self.set_text_features(source_class, target_class)
cos_text_angle = self.target_text_features @ self.src_text_features.T
text_angle = torch.acos(cos_text_angle)
src_img_features = self.get_image_features(src_img).unsqueeze(2)
target_img_features = self.get_image_features(target_img).unsqueeze(1)
cos_img_angle = torch.clamp(target_img_features @ src_img_features, min=-1.0, max=1.0)
img_angle = torch.acos(cos_img_angle)
text_angle = text_angle.unsqueeze(0).repeat(img_angle.size()[0], 1, 1)
cos_text_angle = cos_text_angle.unsqueeze(0).repeat(img_angle.size()[0], 1, 1)
return self.angle_loss(cos_img_angle, cos_text_angle)
def compose_text_with_templates(self, text: str, templates=imagenet_templates) -> list:
return [template.format(text) for template in templates]
def clip_directional_loss(self, src_img: torch.Tensor, source_classes: np.ndarray, target_img: torch.Tensor,
target_classes: np.ndarray) -> torch.Tensor:
target_directions = []
for key in zip(source_classes, target_classes):
if key not in self.target_directions_cache.keys():
new_direction = self.compute_text_direction(*key)
self.target_directions_cache[key] = new_direction
target_directions.append(self.target_directions_cache[key])
target_directions = torch.cat(target_directions)
src_encoding = self.get_image_features(src_img)
target_encoding = self.get_image_features(target_img)
edit_direction = (target_encoding - src_encoding)
if edit_direction.sum() == 0:
target_encoding = self.get_image_features(target_img + 1e-6)
edit_direction = (target_encoding - src_encoding)
edit_direction /= (edit_direction.clone().norm(dim=-1, keepdim=True))
return self.direction_loss(edit_direction, target_directions).sum()
def global_clip_loss(self, img: torch.Tensor, text) -> torch.Tensor:
if not isinstance(text, list):
text = [text]
tokens = clip.tokenize(text).to(self.device)
image = self.preprocess(img)
logits_per_image, _ = self.model(image, tokens)
return (1. - logits_per_image / 100).mean()
def random_patch_centers(self, img_shape, num_patches, size):
batch_size, channels, height, width = img_shape
half_size = size // 2
patch_centers = np.concatenate(
[np.random.randint(half_size, width - half_size, size=(batch_size * num_patches, 1)),
np.random.randint(half_size, height - half_size, size=(batch_size * num_patches, 1))], axis=1)
return patch_centers
def generate_patches(self, img: torch.Tensor, patch_centers, size):
batch_size = img.shape[0]
num_patches = len(patch_centers) // batch_size
half_size = size // 2
patches = []
for batch_idx in range(batch_size):
for patch_idx in range(num_patches):
center_x = patch_centers[batch_idx * num_patches + patch_idx][0]
center_y = patch_centers[batch_idx * num_patches + patch_idx][1]
patch = img[batch_idx:batch_idx + 1, :, center_y - half_size:center_y + half_size,
center_x - half_size:center_x + half_size]
patches.append(patch)
patches = torch.cat(patches, axis=0)
return patches
def patch_scores(self, img: torch.Tensor, class_str: str, patch_centers, patch_size: int) -> torch.Tensor:
parts = self.compose_text_with_templates(class_str, part_templates)
tokens = clip.tokenize(parts).to(self.device)
text_features = self.encode_text(tokens).detach()
patches = self.generate_patches(img, patch_centers, patch_size)
image_features = self.get_image_features(patches)
similarity = image_features @ text_features.T
return similarity
def clip_patch_similarity(self, src_img: torch.Tensor, source_class: str, target_img: torch.Tensor,
target_class: str) -> torch.Tensor:
patch_size = 196 # TODO remove magic number
patch_centers = self.random_patch_centers(src_img.shape, 4, patch_size) # TODO remove magic number
src_scores = self.patch_scores(src_img, source_class, patch_centers, patch_size)
target_scores = self.patch_scores(target_img, target_class, patch_centers, patch_size)
return self.patch_loss(src_scores, target_scores)
def patch_directional_loss(self, src_img: torch.Tensor, source_class: str, target_img: torch.Tensor,
target_class: str) -> torch.Tensor:
if self.patch_text_directions is None:
src_part_classes = self.compose_text_with_templates(source_class, part_templates)
target_part_classes = self.compose_text_with_templates(target_class, part_templates)
parts_classes = list(zip(src_part_classes, target_part_classes))
self.patch_text_directions = torch.cat(
[self.compute_text_direction(pair[0], pair[1]) for pair in parts_classes], dim=0)
patch_size = 510 # TODO remove magic numbers
patch_centers = self.random_patch_centers(src_img.shape, 1, patch_size)
patches = self.generate_patches(src_img, patch_centers, patch_size)
src_features = self.get_image_features(patches)
patches = self.generate_patches(target_img, patch_centers, patch_size)
target_features = self.get_image_features(patches)
edit_direction = (target_features - src_features)
edit_direction /= edit_direction.clone().norm(dim=-1, keepdim=True)
cosine_dists = 1. - self.patch_direction_loss(edit_direction.unsqueeze(1),
self.patch_text_directions.unsqueeze(0))
patch_class_scores = cosine_dists * (edit_direction @ self.patch_text_directions.T).softmax(dim=-1)
return patch_class_scores.mean()
def cnn_feature_loss(self, src_img: torch.Tensor, target_img: torch.Tensor) -> torch.Tensor:
src_features = self.encode_images_with_cnn(src_img)
target_features = self.encode_images_with_cnn(target_img)
return self.texture_loss(src_features, target_features)
def forward(self, src_img: torch.Tensor, source_class: str, target_img: torch.Tensor, target_class: str,
texture_image: torch.Tensor = None):
clip_loss = 0.0
if self.lambda_global:
clip_loss += self.lambda_global * self.global_clip_loss(target_img, [f"a {target_class}"])
if self.lambda_patch: # IMO Same directional loss but run on patches
clip_loss += self.lambda_patch * self.patch_directional_loss(src_img, source_class, target_img,
target_class)
if self.lambda_direction: # The directional loss used in the paper
clip_loss += self.lambda_direction * self.clip_directional_loss(src_img, source_class, target_img,
target_class)
if self.lambda_manifold: # Compute angels of text and image directions and do L1
clip_loss += self.lambda_manifold * self.clip_angle_loss(src_img, source_class, target_img, target_class)
if self.lambda_texture and (texture_image is not None): # L2 on features extracted by a CNN
clip_loss += self.lambda_texture * self.cnn_feature_loss(texture_image, target_img)
return clip_loss
class DirectionLoss(torch.nn.Module):
def __init__(self, loss_type='mse'):
super(DirectionLoss, self).__init__()
self.loss_type = loss_type
self.loss_func = {
'mse': torch.nn.MSELoss,
'cosine': torch.nn.CosineSimilarity,
'mae': torch.nn.L1Loss
}[loss_type]()
def forward(self, x, y):
if self.loss_type == "cosine":
return 1. - self.loss_func(x, y)
return self.loss_func(x, y)
|