File size: 8,614 Bytes
7e0bf18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Copyright 2023 Adobe Research. All rights reserved.
# To view a copy of the license, visit LICENSE.md.
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "False"

from PIL import Image

import torch

import gradio as gr

from lavis.models import load_model_and_preprocess

from diffusers import DDIMScheduler
from src.utils.ddim_inv import DDIMInversion
from src.utils.edit_directions import construct_direction
from src.utils.scheduler import DDIMInverseScheduler
from src.utils.edit_pipeline import EditingPipeline

def main():
    NUM_DDIM_STEPS = 50
    TORCH_DTYPE = torch.float16
    XA_GUIDANCE = 0.1
    DIR_SCALE = 1.0
    MODEL_NAME = 'CompVis/stable-diffusion-v1-4'
    NEGATIVE_GUIDANCE_SCALE = 5.0
    DEVICE = "cuda"
    # if torch.cuda.is_available():
    #     DEVICE = "cuda"
    # else:
    #     DEVICE = "cpu"
    # print(f"Using {DEVICE}")

    model_blip, vis_processors, _ = load_model_and_preprocess(name="blip_caption", model_type="base_coco", is_eval=True, device=DEVICE)
    pipe = EditingPipeline.from_pretrained(MODEL_NAME, torch_dtype=TORCH_DTYPE, safety_checker=None).to(DEVICE)
    pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)

    inv_pipe = DDIMInversion.from_pretrained(MODEL_NAME, torch_dtype=TORCH_DTYPE, safety_checker=None).to("cuda")
    inv_pipe.scheduler = DDIMInverseScheduler.from_config(inv_pipe.scheduler.config)

    TASKS = ["dog2cat","cat2dog","horse2zebra","zebra2horse","horse2llama","dog2capy"]
    TASK_OPTIONS = ["Dog to Cat", "Cat to Dog", "Horse to Zebra", "Zebra to Horse", "Horse to Llama", "Dog to Capy"]

    def edit_real_image(
        og_img,
        task,
        seed,
        xa_guidance,
        num_ddim_steps,
        dir_scale
    ):
        torch.cuda.manual_seed(seed)

        # do inversion first, get inversion and generated prompt
        curr_img = og_img.resize((512,512), Image.Resampling.LANCZOS)
        _image = vis_processors["eval"](curr_img).unsqueeze(0).to(DEVICE)
        prompt_str = model_blip.generate({"image": _image})[0]
        x_inv, _, _ = inv_pipe(
            prompt_str, 
            guidance_scale=1,
            num_inversion_steps=NUM_DDIM_STEPS,
            img=curr_img,
            torch_dtype=TORCH_DTYPE
        )

        task_str = TASKS[task]

        rec_pil, edit_pil = pipe(
            prompt_str,
            num_inference_steps=num_ddim_steps,
            x_in=x_inv[0].unsqueeze(0),
            edit_dir=construct_direction(task_str)*dir_scale,
            guidance_amount=xa_guidance,
            guidance_scale=NEGATIVE_GUIDANCE_SCALE,
            negative_prompt=prompt_str # use the unedited prompt for the negative prompt
        )

        return prompt_str, edit_pil[0]


    def edit_real_image_example():
        test_img = Image.open("./assets/test_images/cats/cat_4.png")
        seed = 42
        task = 1
        prompt_str, edited_img = edit_real_image(test_img, task, seed, XA_GUIDANCE, NUM_DDIM_STEPS, DIR_SCALE)
        return test_img, seed, "Cat to Dog", prompt_str, edited_img, XA_GUIDANCE, NUM_DDIM_STEPS, DIR_SCALE


    def edit_synthetic_image(seed, task, prompt_str, xa_guidance, num_ddim_steps):
        torch.cuda.manual_seed(seed)
        x = torch.randn((1,4,64,64), device="cuda")

        task_str = TASKS[task]

        rec_pil, edit_pil = pipe(
            prompt_str, 
            num_inference_steps=num_ddim_steps,
            x_in=x,
            edit_dir=construct_direction(task_str),
            guidance_amount=xa_guidance,
            guidance_scale=NEGATIVE_GUIDANCE_SCALE,
            negative_prompt="" # use the empty string for the negative prompt
        )

        return rec_pil[0], edit_pil[0]

    def edit_synth_image_example():
        seed = 42
        task = 1
        xa_guidance = XA_GUIDANCE
        num_ddim_steps = NUM_DDIM_STEPS
        prompt_str = "A cute white cat sitting on top of the fridge"
        recon_img, edited_img = edit_synthetic_image(seed, task, prompt_str, xa_guidance, num_ddim_steps)
        return seed, "Cat to Dog", xa_guidance, num_ddim_steps, prompt_str, recon_img, edited_img
    
    with gr.Blocks() as demo:
        gr.Markdown("""
            ### Zero-shot Image-to-Image Translation (https://github.com/pix2pixzero/pix2pix-zero) 
            Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, Jun-Yan Zhu  <br/>
            - For real images:
              - Upload an image of a dog, cat or horse, 
              - Choose one of the task options to turn it into another animal! 
              - Changing Parameters:
                - Increase direction scale is it is not cat (or another animal) enough. 
                - If the quality is not high enough, increase num ddim steps. 
                - Increase cross attention guidance to preserve original image structures. <br/>
            - For synthetic images:
              - Enter a prompt about dogs/cats/horses
              - Choose a task option
        """)
        with gr.Tab("Real Image"):
            with gr.Row():
                seed = gr.Number(value=42, precision=1, label="Seed", interactive=True)
                real_xa_guidance = gr.Number(value=XA_GUIDANCE, label="Cross Attention Guidance", interactive=True)
                real_num_ddim_steps = gr.Number(value=NUM_DDIM_STEPS, precision=1, label="Num DDIM steps", interactive=True)
                real_edit_dir_scale = gr.Number(value=DIR_SCALE, label="Edit Direction Scale", interactive=True)     
                real_generate_button = gr.Button("Generate")
                real_load_sample_button = gr.Button("Load Example")

            with gr.Row():
                task_name = gr.Radio(
                    label='Task Name',
                    choices=TASK_OPTIONS,
                    value=TASK_OPTIONS[0],
                    type="index",
                    show_label=True,
                    interactive=True,
                )

            with gr.Row():
                recon_text = gr.Textbox(lines=1, label="Reconstructed Text", interactive=False)
            with gr.Row():
                input_image = gr.Image(label="Input Image", type="pil", interactive=True)
                output_image = gr.Image(label="Output Image", type="pil", interactive=False)
            

        with gr.Tab("Synthetic Images"):
            with gr.Row():
                synth_seed = gr.Number(value=42, precision=1, label="Seed", interactive=True)
                synth_prompt = gr.Textbox(lines=1, label="Prompt", interactive=True)
                synth_generate_button = gr.Button("Generate")
                synth_load_sample_button = gr.Button("Load Example")
            with gr.Row():
                synth_task_name = gr.Radio(
                    label='Task Name',
                    choices=TASK_OPTIONS,
                    value=TASK_OPTIONS[0],
                    type="index",
                    show_label=True,
                    interactive=True,
                )
                synth_xa_guidance = gr.Number(value=XA_GUIDANCE, label="Cross Attention Guidance", interactive=True)
                synth_num_ddim_steps = gr.Number(value=NUM_DDIM_STEPS, precision=1, label="Num DDIM steps", interactive=True)
            with gr.Row():
                synth_input_image = gr.Image(label="Input Image", type="pil", interactive=False)
                synth_output_image = gr.Image(label="Output Image", type="pil", interactive=False)
            

    
        real_generate_button.click(
            fn=edit_real_image,
            inputs=[
                input_image, task_name, seed, real_xa_guidance, real_num_ddim_steps, real_edit_dir_scale
            ],
            outputs=[recon_text, output_image]
        )

        real_load_sample_button.click(
            fn=edit_real_image_example,
            inputs=[],
            outputs=[input_image, seed, task_name, recon_text, output_image, real_xa_guidance, real_num_ddim_steps, real_edit_dir_scale]
        )

        synth_generate_button.click(
            fn=edit_synthetic_image,
            inputs=[synth_seed, synth_task_name, synth_prompt, synth_xa_guidance, synth_num_ddim_steps],
            outputs=[synth_input_image, synth_output_image]
        )

        synth_load_sample_button.click(
            fn=edit_synth_image_example,
            inputs=[],
            outputs=[seed, synth_task_name, synth_xa_guidance, synth_num_ddim_steps, synth_prompt, synth_input_image, synth_output_image]
        )


    demo.queue(concurrency_count=1)
    demo.launch(share=False, server_name="0.0.0.0")


if __name__ == "__main__":
    main()