from abc import ABC, abstractmethod from typing import Any, Dict, Type from langchain.output_parsers import PydanticOutputParser from langchain.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel, SecretStr from langchain_core.runnables import Runnable from langchain_openai import ChatOpenAI class ChainGenerator(ABC): def __init__( self, openai_api_key: SecretStr, chat_temperature: float = 0.3, chat_model: str = "gpt-3.5-turbo", ) -> None: """ Initializes the class with the given parameters. Args: openai_api_key (SecretStr): The API key for OpenAI. chat_temperature (float, optional): The temperature to use for chat. Defaults to 0.3. chat_model (str, optional): The model to use for chat. Defaults to "gpt-3.5-turbo". Returns: None """ self.openai_api_key = openai_api_key self.chat_temperature = chat_temperature self._initialize_chat_llm(chat_model) @abstractmethod def _get_system_prompt(self) -> ChatPromptTemplate: """Returns the system prompt for the exam. Returns: ChatPromptTemplate: System prompt. """ @abstractmethod def _create_chain(self) -> Runnable[Any, Any]: """Creates the chain. Returns: RunnableSequence: Chain. """ def _initialize_chat_llm(self, chat_model: str) -> None: """Initializes the ChatOpenAI language model.""" self.chat_llm = ChatOpenAI( api_key=self.openai_api_key, temperature=self.chat_temperature, model=chat_model, ) class EvaluationChatModel(ChainGenerator): """Abstract base class for evaluation chat models.""" def __init__(self, level: str, openai_api_key: SecretStr, chat_temperature: float) -> None: """Initialize the evaluation chat model. Args: level (str): Level of the exam. openai_api_key (SecretStr): OpenAI API key. chat_temperature (float): Temperature for the chat model. Returns: None """ super().__init__(openai_api_key=openai_api_key, chat_temperature=chat_temperature) self.level = level @abstractmethod def _get_output_parser(self, pydantic_schema: Type[BaseModel]) -> PydanticOutputParser[Any]: """Get the output parser for the model. Args: pydantic_schema (BaseModel): The output schema of the model. Returns: PydanticOutputParser: The output parser for the model. """ @abstractmethod def predict(self, *args: Any, **kwargs: Any) -> Dict[str, str]: """ Defines how the chain should be called in the predict method. Returns: Dict: The return value of the predict method. """ class ContentGenerator(ChainGenerator): """Abstract base class for generating content""" @abstractmethod def generate(self) -> str: """ Defines how the chain should be called in the generate method. Returns: str: The return value of the generate method. """