alvations commited on
Commit
2efbab0
·
1 Parent(s): add65fc

Add my new, shiny module.

Browse files
Files changed (1) hide show
  1. llm_harness_mistral_arc.py +6 -12
llm_harness_mistral_arc.py CHANGED
@@ -23,17 +23,11 @@ class llm_harness_mistral_arc(evaluate.Metric):
23
  return evaluate.MetricInfo(
24
  # This is the description that will appear on the modules page.
25
  module_type="metric",
26
- description="",
27
- citation="",
28
- inputs_description="",
29
  # This defines the format of each prediction and reference
30
- features=[
31
- datasets.Features(
32
- {
33
- "pretrained": datasets.Value("string", id="sequence"),
34
- "tasks": datasets.Sequence(datasets.Value("string", id="sequence"), id="tasks"),
35
- }
36
- )],
37
  # Homepage of the module for documentation
38
  homepage="http://module.homepage",
39
  # Additional links to the codebase or references
@@ -41,7 +35,7 @@ class llm_harness_mistral_arc(evaluate.Metric):
41
  reference_urls=["http://path.to.reference.url/new_module"]
42
  )
43
 
44
- def _compute(self, pretrained, tasks):
45
  outputs = lm_eval.simple_evaluate(
46
  model="hf",
47
  model_args={"pretrained":pretrained},
@@ -50,6 +44,6 @@ class llm_harness_mistral_arc(evaluate.Metric):
50
  )
51
  results = {}
52
  for task in outputs['results']:
53
- results[task] = {'acc':outputs['results'][task]['acc,none'],
54
  'acc_norm':outputs['results'][task]['acc_norm,none']}
55
  return results
 
23
  return evaluate.MetricInfo(
24
  # This is the description that will appear on the modules page.
25
  module_type="metric",
26
+ description=_DESCRIPTION,
27
+ citation=_CITATION,
28
+ inputs_description=_KWARGS_DESCRIPTION,
29
  # This defines the format of each prediction and reference
30
+ features={},
 
 
 
 
 
 
31
  # Homepage of the module for documentation
32
  homepage="http://module.homepage",
33
  # Additional links to the codebase or references
 
35
  reference_urls=["http://path.to.reference.url/new_module"]
36
  )
37
 
38
+ def _compute(self, pretrained=None, tasks=[]):
39
  outputs = lm_eval.simple_evaluate(
40
  model="hf",
41
  model_args={"pretrained":pretrained},
 
44
  )
45
  results = {}
46
  for task in outputs['results']:
47
+ results[task] = {'acc':outputs['results'][task]['acc,none'],
48
  'acc_norm':outputs['results'][task]['acc_norm,none']}
49
  return results