File size: 8,882 Bytes
f88f754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import json
import random

import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline, LCMScheduler

with open("sdxl_lora.json", "r") as file:
    data = json.load(file)
    sdxl_loras_raw = [
        {
            "image": item["image"],
            "title": item["title"],
            "repo": item["repo"],
            "trigger_word": item["trigger_word"],
            "weights": item["weights"],
            "is_pivotal": item.get("is_pivotal", False),
            "text_embedding_weights": item.get("text_embedding_weights", None),
            "likes": item.get("likes", 0),
        }
        for item in data
    ]

# Sort the loras by likes
sdxl_loras_raw = sorted(sdxl_loras_raw, key=lambda x: x["likes"], reverse=True)

device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "stabilityai/stable-diffusion-xl-base-1.0"

if gr.NO_RELOAD:
    torch.cuda.max_memory_allocated(device=device)
    pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16")
    pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
    pipe.load_lora_weights("jasperai/flash-sdxl", adapter_name="lora")
    pipe.to(device="cuda", dtype=torch.float16)


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


def check_and_load_lora_user(user_lora_selector, user_lora_weight, gr_lora_loaded):
    flash_sdxl_id = "jasperai/flash-sdxl"

    global pipe
    if user_lora_selector == "" or user_lora_selector == "":
        raise gr.Error("Please select a LoRA before running the inference.")

    if gr_lora_loaded != user_lora_selector:
        gr.Info("Loading LoRA")
        pipe.unload_lora_weights()
        pipe.load_lora_weights(flash_sdxl_id, adapter_name="lora")
        pipe.load_lora_weights(user_lora_selector, adapter_name="user")
        pipe.set_adapters(["lora", "user"], adapter_weights=[1.0, user_lora_weight])
        gr.Info("LoRA Loaded")

        gr_lora_loaded = user_lora_selector

    return gr_lora_loaded


def rescale_lora(user_lora_weight):

    global pipe
    pipe.set_adapters(["lora", "user"], adapter_weights=[1.0, user_lora_weight])


def update_selection(
    selected_state: gr.SelectData,
    gr_sdxl_loras,
):

    lora_id = gr_sdxl_loras[selected_state.index]["repo"]
    trigger_word = gr_sdxl_loras[selected_state.index]["trigger_word"]

    return lora_id, trigger_word


@spaces.GPU
def infer(
    pre_prompt,
    prompt,
    seed,
    randomize_seed,
    num_inference_steps,
    negative_prompt,
    guidance_scale,
):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    if pre_prompt != "":
        prompt = f"{pre_prompt} {prompt}"

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
    ).images[0]

    return image


css = """

h1 {
    text-align: center;
    display:block;
}

p {
    text-align: justify;
    display:block;
}

"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:

    gr.Markdown(
        f"""
    # ⚑ FlashDiffusion: FlashLoRA ⚑

    This is an interactive demo of [Flash Diffusion](https://gojasper.github.io/flash-diffusion-project/) **on top of** existing LoRAs.
    
    The distillation method proposed in [Flash Diffusion: Accelerating Any Conditional Diffusion Model for Few Steps Image Generation](http://arxiv.org/abs/2406.02347) *by ClΓ©ment Chadebec, Onur Tasar, Eyal Benaroche and Benjamin Aubin* from Jasper Research.
    The LoRAs can be added **without** any retraining for similar results in most cases. Feel free to tweak the parameters and use your own LoRAs by giving a look at the [Github Repo](https://github.com/gojasper/flash-diffusion)
    """
    )
    gr.Markdown(
        "If you enjoy the space, please also promote *open-source* by giving a ⭐ to our repo [![GitHub Stars](https://img.shields.io/github/stars/gojasper/flash-diffusion?style=social)](https://github.com/gojasper/flash-diffusion)"
    )

    # Index of selected LoRA
    gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
    # Serve as memory for currently loaded lora in pipe
    gr_lora_loaded = gr.State(value="")
    gr_lora_id = gr.State(value="")

    with gr.Row():

        with gr.Blocks():

            with gr.Column():

                user_lora_selector = gr.Textbox(
                    label="Current Selected LoRA",
                    max_lines=1,
                    interactive=False,
                )

                user_lora_weight = gr.Slider(
                    label="Selected LoRA Weight",
                    minimum=0.5,
                    maximum=3,
                    step=0.1,
                    value=1,
                )

                gallery = gr.Gallery(
                    value=[(item["image"], item["title"]) for item in sdxl_loras_raw],
                    label="SDXL LoRA Gallery",
                    allow_preview=False,
                    columns=3,
                    elem_id="gallery",
                    show_share_button=False,
                )

        with gr.Column():

            with gr.Row():

                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                    scale=5,
                )

                run_button = gr.Button("Run", scale=1)

            result = gr.Image(label="Result", show_label=False)

            with gr.Accordion("Advanced Settings", open=False):

                pre_prompt = gr.Text(
                    label="Pre-Prompt",
                    show_label=True,
                    max_lines=1,
                    placeholder="Pre Prompt from the LoRA config",
                    container=True,
                    scale=5,
                )

                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )

                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                with gr.Row():

                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=4,
                        maximum=8,
                        step=1,
                        value=4,
                    )

                with gr.Row():

                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=1,
                        maximum=6,
                        step=0.5,
                        value=1,
                    )

                hint_negative = gr.Markdown(
                    """πŸ’‘ _Hint : Negative Prompt will only work with Guidance > 1 but the model was 
                    trained to be used with guidance = 1 (ie. without guidance).
                    Can degrade the results, use cautiously._"""
                )

                negative_prompt = gr.Text(
                    label="Negative Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter a negative Prompt",
                    container=False,
                )

    gr.on(
        [
            run_button.click,
            seed.change,
            randomize_seed.change,
            # prompt.change,
            prompt.submit,
            negative_prompt.change,
            negative_prompt.submit,
            guidance_scale.change,
        ],
        fn=check_and_load_lora_user,
        inputs=[user_lora_selector, user_lora_weight, gr_lora_loaded],
        outputs=[gr_lora_loaded],
    ).success(
        fn=infer,
        inputs=[
            pre_prompt,
            prompt,
            seed,
            randomize_seed,
            num_inference_steps,
            negative_prompt,
            guidance_scale,
        ],
        outputs=[result],
        show_progress=True,
    )

    user_lora_weight.change(
        fn=rescale_lora,
        inputs=[user_lora_weight],
        outputs=[],
        show_progress="hidden",
    )

    gallery.select(
        fn=update_selection,
        inputs=[gr_sdxl_loras],
        outputs=[
            user_lora_selector,
            pre_prompt,
        ],
        show_progress=False,
    )

    gr.Markdown("**Disclaimer:**")
    gr.Markdown(
        "This demo is only for research purpose. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards."
    )


demo.queue().launch()