Spaces:
Runtime error
Runtime error
File size: 8,882 Bytes
f88f754 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import json
import random
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline, LCMScheduler
with open("sdxl_lora.json", "r") as file:
data = json.load(file)
sdxl_loras_raw = [
{
"image": item["image"],
"title": item["title"],
"repo": item["repo"],
"trigger_word": item["trigger_word"],
"weights": item["weights"],
"is_pivotal": item.get("is_pivotal", False),
"text_embedding_weights": item.get("text_embedding_weights", None),
"likes": item.get("likes", 0),
}
for item in data
]
# Sort the loras by likes
sdxl_loras_raw = sorted(sdxl_loras_raw, key=lambda x: x["likes"], reverse=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
if gr.NO_RELOAD:
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("jasperai/flash-sdxl", adapter_name="lora")
pipe.to(device="cuda", dtype=torch.float16)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def check_and_load_lora_user(user_lora_selector, user_lora_weight, gr_lora_loaded):
flash_sdxl_id = "jasperai/flash-sdxl"
global pipe
if user_lora_selector == "" or user_lora_selector == "":
raise gr.Error("Please select a LoRA before running the inference.")
if gr_lora_loaded != user_lora_selector:
gr.Info("Loading LoRA")
pipe.unload_lora_weights()
pipe.load_lora_weights(flash_sdxl_id, adapter_name="lora")
pipe.load_lora_weights(user_lora_selector, adapter_name="user")
pipe.set_adapters(["lora", "user"], adapter_weights=[1.0, user_lora_weight])
gr.Info("LoRA Loaded")
gr_lora_loaded = user_lora_selector
return gr_lora_loaded
def rescale_lora(user_lora_weight):
global pipe
pipe.set_adapters(["lora", "user"], adapter_weights=[1.0, user_lora_weight])
def update_selection(
selected_state: gr.SelectData,
gr_sdxl_loras,
):
lora_id = gr_sdxl_loras[selected_state.index]["repo"]
trigger_word = gr_sdxl_loras[selected_state.index]["trigger_word"]
return lora_id, trigger_word
@spaces.GPU
def infer(
pre_prompt,
prompt,
seed,
randomize_seed,
num_inference_steps,
negative_prompt,
guidance_scale,
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if pre_prompt != "":
prompt = f"{pre_prompt} {prompt}"
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
).images[0]
return image
css = """
h1 {
text-align: center;
display:block;
}
p {
text-align: justify;
display:block;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
gr.Markdown(
f"""
# β‘ FlashDiffusion: FlashLoRA β‘
This is an interactive demo of [Flash Diffusion](https://gojasper.github.io/flash-diffusion-project/) **on top of** existing LoRAs.
The distillation method proposed in [Flash Diffusion: Accelerating Any Conditional Diffusion Model for Few Steps Image Generation](http://arxiv.org/abs/2406.02347) *by ClΓ©ment Chadebec, Onur Tasar, Eyal Benaroche and Benjamin Aubin* from Jasper Research.
The LoRAs can be added **without** any retraining for similar results in most cases. Feel free to tweak the parameters and use your own LoRAs by giving a look at the [Github Repo](https://github.com/gojasper/flash-diffusion)
"""
)
gr.Markdown(
"If you enjoy the space, please also promote *open-source* by giving a β to our repo [![GitHub Stars](https://img.shields.io/github/stars/gojasper/flash-diffusion?style=social)](https://github.com/gojasper/flash-diffusion)"
)
# Index of selected LoRA
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
# Serve as memory for currently loaded lora in pipe
gr_lora_loaded = gr.State(value="")
gr_lora_id = gr.State(value="")
with gr.Row():
with gr.Blocks():
with gr.Column():
user_lora_selector = gr.Textbox(
label="Current Selected LoRA",
max_lines=1,
interactive=False,
)
user_lora_weight = gr.Slider(
label="Selected LoRA Weight",
minimum=0.5,
maximum=3,
step=0.1,
value=1,
)
gallery = gr.Gallery(
value=[(item["image"], item["title"]) for item in sdxl_loras_raw],
label="SDXL LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False,
)
with gr.Column():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
scale=5,
)
run_button = gr.Button("Run", scale=1)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
pre_prompt = gr.Text(
label="Pre-Prompt",
show_label=True,
max_lines=1,
placeholder="Pre Prompt from the LoRA config",
container=True,
scale=5,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=4,
maximum=8,
step=1,
value=4,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=6,
step=0.5,
value=1,
)
hint_negative = gr.Markdown(
"""π‘ _Hint : Negative Prompt will only work with Guidance > 1 but the model was
trained to be used with guidance = 1 (ie. without guidance).
Can degrade the results, use cautiously._"""
)
negative_prompt = gr.Text(
label="Negative Prompt",
show_label=False,
max_lines=1,
placeholder="Enter a negative Prompt",
container=False,
)
gr.on(
[
run_button.click,
seed.change,
randomize_seed.change,
# prompt.change,
prompt.submit,
negative_prompt.change,
negative_prompt.submit,
guidance_scale.change,
],
fn=check_and_load_lora_user,
inputs=[user_lora_selector, user_lora_weight, gr_lora_loaded],
outputs=[gr_lora_loaded],
).success(
fn=infer,
inputs=[
pre_prompt,
prompt,
seed,
randomize_seed,
num_inference_steps,
negative_prompt,
guidance_scale,
],
outputs=[result],
show_progress=True,
)
user_lora_weight.change(
fn=rescale_lora,
inputs=[user_lora_weight],
outputs=[],
show_progress="hidden",
)
gallery.select(
fn=update_selection,
inputs=[gr_sdxl_loras],
outputs=[
user_lora_selector,
pre_prompt,
],
show_progress=False,
)
gr.Markdown("**Disclaimer:**")
gr.Markdown(
"This demo is only for research purpose. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards."
)
demo.queue().launch()
|