alvi123 commited on
Commit
6cdce89
·
1 Parent(s): 252f7cf

Delete radar_chart.py

Browse files
Files changed (1) hide show
  1. radar_chart.py +0 -202
radar_chart.py DELETED
@@ -1,202 +0,0 @@
1
- """
2
- ======================================
3
- Radar chart (aka spider or star chart)
4
- ======================================
5
- This example creates a radar chart, also known as a spider or star chart [1]_.
6
- Although this example allows a frame of either 'circle' or 'polygon', polygon
7
- frames don't have proper gridlines (the lines are circles instead of polygons).
8
- It's possible to get a polygon grid by setting GRIDLINE_INTERPOLATION_STEPS in
9
- matplotlib.axis to the desired number of vertices, but the orientation of the
10
- polygon is not aligned with the radial axes.
11
- .. [1] https://en.wikipedia.org/wiki/Radar_chart
12
- """
13
-
14
- import numpy as np
15
-
16
- import matplotlib.pyplot as plt
17
- from matplotlib.patches import Circle, RegularPolygon
18
- from matplotlib.path import Path
19
- from matplotlib.projections.polar import PolarAxes
20
- from matplotlib.projections import register_projection
21
- from matplotlib.spines import Spine
22
- from matplotlib.transforms import Affine2D
23
-
24
-
25
- def radar_factory(num_vars, frame='circle'):
26
- """
27
- Create a radar chart with `num_vars` axes.
28
- This function creates a RadarAxes projection and registers it.
29
- Parameters
30
- ----------
31
- num_vars : int
32
- Number of variables for radar chart.
33
- frame : {'circle', 'polygon'}
34
- Shape of frame surrounding axes.
35
- """
36
- # calculate evenly-spaced axis angles
37
- theta = np.linspace(0, 2*np.pi, num_vars, endpoint=False)
38
-
39
- class RadarTransform(PolarAxes.PolarTransform):
40
-
41
- def transform_path_non_affine(self, path):
42
- # Paths with non-unit interpolation steps correspond to gridlines,
43
- # in which case we force interpolation (to defeat PolarTransform's
44
- # autoconversion to circular arcs).
45
- if path._interpolation_steps > 1:
46
- path = path.interpolated(num_vars)
47
- return Path(self.transform(path.vertices), path.codes)
48
-
49
- class RadarAxes(PolarAxes):
50
-
51
- name = 'radar'
52
- PolarTransform = RadarTransform
53
-
54
- def __init__(self, *args, **kwargs):
55
- super().__init__(*args, **kwargs)
56
- # rotate plot such that the first axis is at the top
57
- self.set_theta_zero_location('N')
58
-
59
- def fill(self, *args, closed=True, **kwargs):
60
- """Override fill so that line is closed by default"""
61
- return super().fill(closed=closed, *args, **kwargs)
62
-
63
- def plot(self, *args, **kwargs):
64
- """Override plot so that line is closed by default"""
65
- lines = super().plot(*args, **kwargs)
66
- for line in lines:
67
- self._close_line(line)
68
-
69
- def _close_line(self, line):
70
- x, y = line.get_data()
71
- # FIXME: markers at x[0], y[0] get doubled-up
72
- if x[0] != x[-1]:
73
- x = np.append(x, x[0])
74
- y = np.append(y, y[0])
75
- line.set_data(x, y)
76
-
77
- def set_varlabels(self, labels):
78
- self.set_thetagrids(np.degrees(theta), labels)
79
-
80
- def _gen_axes_patch(self):
81
- # The Axes patch must be centered at (0.5, 0.5) and of radius 0.5
82
- # in axes coordinates.
83
- if frame == 'circle':
84
- return Circle((0.5, 0.5), 0.5)
85
- elif frame == 'polygon':
86
- return RegularPolygon((0.5, 0.5), num_vars,
87
- radius=.5, edgecolor="k")
88
- else:
89
- raise ValueError("Unknown value for 'frame': %s" % frame)
90
-
91
- def _gen_axes_spines(self):
92
- if frame == 'circle':
93
- return super()._gen_axes_spines()
94
- elif frame == 'polygon':
95
- # spine_type must be 'left'/'right'/'top'/'bottom'/'circle'.
96
- spine = Spine(axes=self,
97
- spine_type='circle',
98
- path=Path.unit_regular_polygon(num_vars))
99
- # unit_regular_polygon gives a polygon of radius 1 centered at
100
- # (0, 0) but we want a polygon of radius 0.5 centered at (0.5,
101
- # 0.5) in axes coordinates.
102
- spine.set_transform(Affine2D().scale(.5).translate(.5, .5)
103
- + self.transAxes)
104
- return {'polar': spine}
105
- else:
106
- raise ValueError("Unknown value for 'frame': %s" % frame)
107
-
108
- register_projection(RadarAxes)
109
- return theta
110
-
111
-
112
- def example_data():
113
- # The following data is from the Denver Aerosol Sources and Health study.
114
- # See doi:10.1016/j.atmosenv.2008.12.017
115
- #
116
- # The data are pollution source profile estimates for five modeled
117
- # pollution sources (e.g., cars, wood-burning, etc) that emit 7-9 chemical
118
- # species. The radar charts are experimented with here to see if we can
119
- # nicely visualize how the modeled source profiles change across four
120
- # scenarios:
121
- # 1) No gas-phase species present, just seven particulate counts on
122
- # Sulfate
123
- # Nitrate
124
- # Elemental Carbon (EC)
125
- # Organic Carbon fraction 1 (OC)
126
- # Organic Carbon fraction 2 (OC2)
127
- # Organic Carbon fraction 3 (OC3)
128
- # Pyrolyzed Organic Carbon (OP)
129
- # 2)Inclusion of gas-phase specie carbon monoxide (CO)
130
- # 3)Inclusion of gas-phase specie ozone (O3).
131
- # 4)Inclusion of both gas-phase species is present...
132
- data = [
133
- ['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO', 'O3'],
134
- ('Basecase', [
135
- [0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00],
136
- [0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00],
137
- [0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00],
138
- [0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00],
139
- [0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00]]),
140
- ('With CO', [
141
- [0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00],
142
- [0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00],
143
- [0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00],
144
- [0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00],
145
- [0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]]),
146
- ('With O3', [
147
- [0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03],
148
- [0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00],
149
- [0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00],
150
- [0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95],
151
- [0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]]),
152
- ('CO & O3', [
153
- [0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01],
154
- [0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00],
155
- [0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00],
156
- [0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88],
157
- [0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]])
158
- ]
159
- return data
160
-
161
-
162
- if __name__ == '__main__':
163
- N = 8
164
- theta = radar_factory(N, frame='polygon')
165
-
166
- # data = example_data()
167
- # spoke_labels = data.pop(0)
168
- spoke_labels = np.array(['neutral',
169
- 'calm',
170
- 'happy',
171
- 'sad',
172
- 'angry',
173
- 'fearful',
174
- 'disgust',
175
- 'surprised'])
176
- fig, axs = plt.subplots(figsize=(8, 8), nrows=1, ncols=1,
177
- subplot_kw=dict(projection='radar'))
178
- # fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)
179
- vec = np.array([0.1, 0.05, 0.2, 0.05, 0.3, 0, 0.15, 0.15])
180
- axs.plot(vec)
181
- axs.set_varlabels(spoke_labels)
182
- # colors = ['b', 'r', 'g', 'm', 'y']
183
- # # Plot the four cases from the example data on separate axes
184
- # for ax, (title, case_data) in zip(axs.flat, data):
185
- # ax.set_rgrids([0.2, 0.4, 0.6, 0.8])
186
- # ax.set_title(title, weight='bold', size='medium', position=(0.5, 1.1),
187
- # horizontalalignment='center', verticalalignment='center')
188
- # for d, color in zip(case_data, colors):
189
- # ax.plot(theta, d, color=color)
190
- # ax.fill(theta, d, facecolor=color, alpha=0.25, label='_nolegend_')
191
- # ax.set_varlabels(spoke_labels)
192
-
193
- # # add legend relative to top-left plot
194
- # labels = ('Factor 1', 'Factor 2', 'Factor 3', 'Factor 4', 'Factor 5')
195
- # legend = axs[0, 0].legend(labels, loc=(0.9, .95),
196
- # labelspacing=0.1, fontsize='small')
197
-
198
- # fig.text(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios',
199
- # horizontalalignment='center', color='black', weight='bold',
200
- # size='large')
201
-
202
- plt.show()