Spaces:
Runtime error
Runtime error
Delete radar_chart.py
Browse files- radar_chart.py +0 -202
radar_chart.py
DELETED
@@ -1,202 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
======================================
|
3 |
-
Radar chart (aka spider or star chart)
|
4 |
-
======================================
|
5 |
-
This example creates a radar chart, also known as a spider or star chart [1]_.
|
6 |
-
Although this example allows a frame of either 'circle' or 'polygon', polygon
|
7 |
-
frames don't have proper gridlines (the lines are circles instead of polygons).
|
8 |
-
It's possible to get a polygon grid by setting GRIDLINE_INTERPOLATION_STEPS in
|
9 |
-
matplotlib.axis to the desired number of vertices, but the orientation of the
|
10 |
-
polygon is not aligned with the radial axes.
|
11 |
-
.. [1] https://en.wikipedia.org/wiki/Radar_chart
|
12 |
-
"""
|
13 |
-
|
14 |
-
import numpy as np
|
15 |
-
|
16 |
-
import matplotlib.pyplot as plt
|
17 |
-
from matplotlib.patches import Circle, RegularPolygon
|
18 |
-
from matplotlib.path import Path
|
19 |
-
from matplotlib.projections.polar import PolarAxes
|
20 |
-
from matplotlib.projections import register_projection
|
21 |
-
from matplotlib.spines import Spine
|
22 |
-
from matplotlib.transforms import Affine2D
|
23 |
-
|
24 |
-
|
25 |
-
def radar_factory(num_vars, frame='circle'):
|
26 |
-
"""
|
27 |
-
Create a radar chart with `num_vars` axes.
|
28 |
-
This function creates a RadarAxes projection and registers it.
|
29 |
-
Parameters
|
30 |
-
----------
|
31 |
-
num_vars : int
|
32 |
-
Number of variables for radar chart.
|
33 |
-
frame : {'circle', 'polygon'}
|
34 |
-
Shape of frame surrounding axes.
|
35 |
-
"""
|
36 |
-
# calculate evenly-spaced axis angles
|
37 |
-
theta = np.linspace(0, 2*np.pi, num_vars, endpoint=False)
|
38 |
-
|
39 |
-
class RadarTransform(PolarAxes.PolarTransform):
|
40 |
-
|
41 |
-
def transform_path_non_affine(self, path):
|
42 |
-
# Paths with non-unit interpolation steps correspond to gridlines,
|
43 |
-
# in which case we force interpolation (to defeat PolarTransform's
|
44 |
-
# autoconversion to circular arcs).
|
45 |
-
if path._interpolation_steps > 1:
|
46 |
-
path = path.interpolated(num_vars)
|
47 |
-
return Path(self.transform(path.vertices), path.codes)
|
48 |
-
|
49 |
-
class RadarAxes(PolarAxes):
|
50 |
-
|
51 |
-
name = 'radar'
|
52 |
-
PolarTransform = RadarTransform
|
53 |
-
|
54 |
-
def __init__(self, *args, **kwargs):
|
55 |
-
super().__init__(*args, **kwargs)
|
56 |
-
# rotate plot such that the first axis is at the top
|
57 |
-
self.set_theta_zero_location('N')
|
58 |
-
|
59 |
-
def fill(self, *args, closed=True, **kwargs):
|
60 |
-
"""Override fill so that line is closed by default"""
|
61 |
-
return super().fill(closed=closed, *args, **kwargs)
|
62 |
-
|
63 |
-
def plot(self, *args, **kwargs):
|
64 |
-
"""Override plot so that line is closed by default"""
|
65 |
-
lines = super().plot(*args, **kwargs)
|
66 |
-
for line in lines:
|
67 |
-
self._close_line(line)
|
68 |
-
|
69 |
-
def _close_line(self, line):
|
70 |
-
x, y = line.get_data()
|
71 |
-
# FIXME: markers at x[0], y[0] get doubled-up
|
72 |
-
if x[0] != x[-1]:
|
73 |
-
x = np.append(x, x[0])
|
74 |
-
y = np.append(y, y[0])
|
75 |
-
line.set_data(x, y)
|
76 |
-
|
77 |
-
def set_varlabels(self, labels):
|
78 |
-
self.set_thetagrids(np.degrees(theta), labels)
|
79 |
-
|
80 |
-
def _gen_axes_patch(self):
|
81 |
-
# The Axes patch must be centered at (0.5, 0.5) and of radius 0.5
|
82 |
-
# in axes coordinates.
|
83 |
-
if frame == 'circle':
|
84 |
-
return Circle((0.5, 0.5), 0.5)
|
85 |
-
elif frame == 'polygon':
|
86 |
-
return RegularPolygon((0.5, 0.5), num_vars,
|
87 |
-
radius=.5, edgecolor="k")
|
88 |
-
else:
|
89 |
-
raise ValueError("Unknown value for 'frame': %s" % frame)
|
90 |
-
|
91 |
-
def _gen_axes_spines(self):
|
92 |
-
if frame == 'circle':
|
93 |
-
return super()._gen_axes_spines()
|
94 |
-
elif frame == 'polygon':
|
95 |
-
# spine_type must be 'left'/'right'/'top'/'bottom'/'circle'.
|
96 |
-
spine = Spine(axes=self,
|
97 |
-
spine_type='circle',
|
98 |
-
path=Path.unit_regular_polygon(num_vars))
|
99 |
-
# unit_regular_polygon gives a polygon of radius 1 centered at
|
100 |
-
# (0, 0) but we want a polygon of radius 0.5 centered at (0.5,
|
101 |
-
# 0.5) in axes coordinates.
|
102 |
-
spine.set_transform(Affine2D().scale(.5).translate(.5, .5)
|
103 |
-
+ self.transAxes)
|
104 |
-
return {'polar': spine}
|
105 |
-
else:
|
106 |
-
raise ValueError("Unknown value for 'frame': %s" % frame)
|
107 |
-
|
108 |
-
register_projection(RadarAxes)
|
109 |
-
return theta
|
110 |
-
|
111 |
-
|
112 |
-
def example_data():
|
113 |
-
# The following data is from the Denver Aerosol Sources and Health study.
|
114 |
-
# See doi:10.1016/j.atmosenv.2008.12.017
|
115 |
-
#
|
116 |
-
# The data are pollution source profile estimates for five modeled
|
117 |
-
# pollution sources (e.g., cars, wood-burning, etc) that emit 7-9 chemical
|
118 |
-
# species. The radar charts are experimented with here to see if we can
|
119 |
-
# nicely visualize how the modeled source profiles change across four
|
120 |
-
# scenarios:
|
121 |
-
# 1) No gas-phase species present, just seven particulate counts on
|
122 |
-
# Sulfate
|
123 |
-
# Nitrate
|
124 |
-
# Elemental Carbon (EC)
|
125 |
-
# Organic Carbon fraction 1 (OC)
|
126 |
-
# Organic Carbon fraction 2 (OC2)
|
127 |
-
# Organic Carbon fraction 3 (OC3)
|
128 |
-
# Pyrolyzed Organic Carbon (OP)
|
129 |
-
# 2)Inclusion of gas-phase specie carbon monoxide (CO)
|
130 |
-
# 3)Inclusion of gas-phase specie ozone (O3).
|
131 |
-
# 4)Inclusion of both gas-phase species is present...
|
132 |
-
data = [
|
133 |
-
['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO', 'O3'],
|
134 |
-
('Basecase', [
|
135 |
-
[0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00],
|
136 |
-
[0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00],
|
137 |
-
[0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00],
|
138 |
-
[0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00],
|
139 |
-
[0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00]]),
|
140 |
-
('With CO', [
|
141 |
-
[0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00],
|
142 |
-
[0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00],
|
143 |
-
[0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00],
|
144 |
-
[0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00],
|
145 |
-
[0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]]),
|
146 |
-
('With O3', [
|
147 |
-
[0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03],
|
148 |
-
[0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00],
|
149 |
-
[0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00],
|
150 |
-
[0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95],
|
151 |
-
[0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]]),
|
152 |
-
('CO & O3', [
|
153 |
-
[0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01],
|
154 |
-
[0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00],
|
155 |
-
[0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00],
|
156 |
-
[0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88],
|
157 |
-
[0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]])
|
158 |
-
]
|
159 |
-
return data
|
160 |
-
|
161 |
-
|
162 |
-
if __name__ == '__main__':
|
163 |
-
N = 8
|
164 |
-
theta = radar_factory(N, frame='polygon')
|
165 |
-
|
166 |
-
# data = example_data()
|
167 |
-
# spoke_labels = data.pop(0)
|
168 |
-
spoke_labels = np.array(['neutral',
|
169 |
-
'calm',
|
170 |
-
'happy',
|
171 |
-
'sad',
|
172 |
-
'angry',
|
173 |
-
'fearful',
|
174 |
-
'disgust',
|
175 |
-
'surprised'])
|
176 |
-
fig, axs = plt.subplots(figsize=(8, 8), nrows=1, ncols=1,
|
177 |
-
subplot_kw=dict(projection='radar'))
|
178 |
-
# fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)
|
179 |
-
vec = np.array([0.1, 0.05, 0.2, 0.05, 0.3, 0, 0.15, 0.15])
|
180 |
-
axs.plot(vec)
|
181 |
-
axs.set_varlabels(spoke_labels)
|
182 |
-
# colors = ['b', 'r', 'g', 'm', 'y']
|
183 |
-
# # Plot the four cases from the example data on separate axes
|
184 |
-
# for ax, (title, case_data) in zip(axs.flat, data):
|
185 |
-
# ax.set_rgrids([0.2, 0.4, 0.6, 0.8])
|
186 |
-
# ax.set_title(title, weight='bold', size='medium', position=(0.5, 1.1),
|
187 |
-
# horizontalalignment='center', verticalalignment='center')
|
188 |
-
# for d, color in zip(case_data, colors):
|
189 |
-
# ax.plot(theta, d, color=color)
|
190 |
-
# ax.fill(theta, d, facecolor=color, alpha=0.25, label='_nolegend_')
|
191 |
-
# ax.set_varlabels(spoke_labels)
|
192 |
-
|
193 |
-
# # add legend relative to top-left plot
|
194 |
-
# labels = ('Factor 1', 'Factor 2', 'Factor 3', 'Factor 4', 'Factor 5')
|
195 |
-
# legend = axs[0, 0].legend(labels, loc=(0.9, .95),
|
196 |
-
# labelspacing=0.1, fontsize='small')
|
197 |
-
|
198 |
-
# fig.text(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios',
|
199 |
-
# horizontalalignment='center', color='black', weight='bold',
|
200 |
-
# size='large')
|
201 |
-
|
202 |
-
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|