Spaces:
Running
Running
File size: 2,131 Bytes
d0e1f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import numpy as np
import torch
import random
from meta_train import mmdPreModel
from collections import namedtuple
import joblib
from transformers import RobertaTokenizer, RobertaModel
def api_init():
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed(0)
torch.cuda.manual_seed_all(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
model_name = 'roberta-base-openai-detector'
model_path_api = f'.'
token_num, hidden_size = 100, 768
Config = namedtuple('Config', ['in_dim', 'hid_dim', 'dropout', 'out_dim', 'token_num'])
config = Config(
in_dim=hidden_size,
token_num=token_num,
hid_dim=512,
dropout=0.2,
out_dim=300,)
net = mmdPreModel(config=config, num_mlp=0, transformer_flag=True, num_hidden_layers=1)
# load the features and models
feature_ref_for_test_filename = f'{model_path_api}/feature_ref_for_test.pt'
model_filename = f'{model_path_api}/logistic_regression_model.pkl'
net_filename = f'{model_path_api}/net.pt'
load_ref_data = torch.load(feature_ref_for_test_filename,map_location=torch.device('cpu')) # cpu
loaded_model = joblib.load(model_filename) # cpu
checkpoint = torch.load(net_filename,map_location=torch.device('cpu'))
net.load_state_dict(checkpoint['net'])
sigma, sigma0_u, ep = checkpoint['sigma'], checkpoint['sigma0_u'], checkpoint['ep']
# generic generative model
cache_dir = ".cache"
base_tokenizer = RobertaTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
base_model = RobertaModel.from_pretrained(model_name, output_hidden_states=True, cache_dir=cache_dir)
# whether load the model to gpu
gpu_using = False
DEVICE = torch.device("cpu")
if gpu_using:
DEVICE = torch.device("cuda:0")
net = net.to(DEVICE)
sigma, sigma0_u, ep = sigma.to(DEVICE), sigma0_u.to(DEVICE), ep.to(DEVICE)
load_ref_data = load_ref_data.to(DEVICE)
base_model = base_model.to(DEVICE)
num_ref = 5000
feature_ref = load_ref_data[np.random.permutation(load_ref_data.shape[0])][:num_ref].to(DEVICE)
return base_model, base_tokenizer, net, feature_ref, sigma, sigma0_u, ep, loaded_model, DEVICE
|