File size: 10,482 Bytes
6ad6801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math

def _gen_bias_mask(max_length):
    """
    Generates bias values (-Inf) to mask future timesteps during attention
    """
    np_mask = np.triu(np.full([max_length, max_length], -np.inf), 1)
    torch_mask = torch.from_numpy(np_mask).type(torch.FloatTensor)
    return torch_mask.unsqueeze(0).unsqueeze(1)

def _gen_timing_signal(length, channels, min_timescale=1.0, max_timescale=1.0e4):
    """
    Generates a [1, length, channels] timing signal consisting of sinusoids
    Adapted from:
    https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/layers/common_attention.py
    """
    position = np.arange(length)
    num_timescales = channels // 2
    log_timescale_increment = (
            math.log(float(max_timescale) / float(min_timescale)) /
            (float(num_timescales) - 1))
    inv_timescales = min_timescale * np.exp(
        np.arange(num_timescales).astype(np.float64) * -log_timescale_increment)
    scaled_time = np.expand_dims(position, 1) * np.expand_dims(inv_timescales, 0)

    signal = np.concatenate([np.sin(scaled_time), np.cos(scaled_time)], axis=1)
    signal = np.pad(signal, [[0, 0], [0, channels % 2]],
                    'constant', constant_values=[0.0, 0.0])
    signal = signal.reshape([1, length, channels])

    return torch.from_numpy(signal).type(torch.FloatTensor)

class LayerNorm(nn.Module):
    # Borrowed from jekbradbury
    # https://github.com/pytorch/pytorch/issues/1959
    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.gamma = nn.Parameter(torch.ones(features))
        self.beta = nn.Parameter(torch.zeros(features))
        self.eps = eps

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.gamma * (x - mean) / (std + self.eps) + self.beta

class OutputLayer(nn.Module):
    """
    Abstract base class for output layer.
    Handles projection to output labels
    """
    def __init__(self, hidden_size, output_size, probs_out=False):
        super(OutputLayer, self).__init__()
        self.output_size = output_size
        self.output_projection = nn.Linear(hidden_size, output_size)
        self.probs_out = probs_out
        self.lstm = nn.LSTM(input_size=hidden_size, hidden_size=int(hidden_size/2), batch_first=True, bidirectional=True)
        self.hidden_size = hidden_size

    def loss(self, hidden, labels):
        raise NotImplementedError('Must implement {}.loss'.format(self.__class__.__name__))

class SoftmaxOutputLayer(OutputLayer):
    """
    Implements a softmax based output layer
    """
    def forward(self, hidden):
        logits = self.output_projection(hidden)
        probs = F.softmax(logits, -1)
        # _, predictions = torch.max(probs, dim=-1)
        topk, indices = torch.topk(probs, 2)
        predictions = indices[:,:,0]
        second = indices[:,:,1]
        if self.probs_out is True:
            return logits
            # return probs
        return predictions, second

    def loss(self, hidden, labels):
        logits = self.output_projection(hidden)
        log_probs = F.log_softmax(logits, -1)
        return F.nll_loss(log_probs.view(-1, self.output_size), labels.view(-1))

class MultiHeadAttention(nn.Module):
    """
    Multi-head attention as per https://arxiv.org/pdf/1706.03762.pdf
    Refer Figure 2
    """

    def __init__(self, input_depth, total_key_depth, total_value_depth, output_depth,
                 num_heads, bias_mask=None, dropout=0.0, attention_map=False):
        """
        Parameters:
            input_depth: Size of last dimension of input
            total_key_depth: Size of last dimension of keys. Must be divisible by num_head
            total_value_depth: Size of last dimension of values. Must be divisible by num_head
            output_depth: Size last dimension of the final output
            num_heads: Number of attention heads
            bias_mask: Masking tensor to prevent connections to future elements
            dropout: Dropout probability (Should be non-zero only during training)
        """
        super(MultiHeadAttention, self).__init__()
        # Checks borrowed from
        # https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/layers/common_attention.py
        if total_key_depth % num_heads != 0:
            raise ValueError("Key depth (%d) must be divisible by the number of "
                             "attention heads (%d)." % (total_key_depth, num_heads))
        if total_value_depth % num_heads != 0:
            raise ValueError("Value depth (%d) must be divisible by the number of "
                             "attention heads (%d)." % (total_value_depth, num_heads))

        self.attention_map = attention_map

        self.num_heads = num_heads
        self.query_scale = (total_key_depth // num_heads) ** -0.5
        self.bias_mask = bias_mask

        # Key and query depth will be same
        self.query_linear = nn.Linear(input_depth, total_key_depth, bias=False)
        self.key_linear = nn.Linear(input_depth, total_key_depth, bias=False)
        self.value_linear = nn.Linear(input_depth, total_value_depth, bias=False)
        self.output_linear = nn.Linear(total_value_depth, output_depth, bias=False)

        self.dropout = nn.Dropout(dropout)

    def _split_heads(self, x):
        """
        Split x such to add an extra num_heads dimension
        Input:
            x: a Tensor with shape [batch_size, seq_length, depth]
        Returns:
            A Tensor with shape [batch_size, num_heads, seq_length, depth/num_heads]
        """
        if len(x.shape) != 3:
            raise ValueError("x must have rank 3")
        shape = x.shape
        return x.view(shape[0], shape[1], self.num_heads, shape[2] // self.num_heads).permute(0, 2, 1, 3)

    def _merge_heads(self, x):
        """
        Merge the extra num_heads into the last dimension
        Input:
            x: a Tensor with shape [batch_size, num_heads, seq_length, depth/num_heads]
        Returns:
            A Tensor with shape [batch_size, seq_length, depth]
        """
        if len(x.shape) != 4:
            raise ValueError("x must have rank 4")
        shape = x.shape
        return x.permute(0, 2, 1, 3).contiguous().view(shape[0], shape[2], shape[3] * self.num_heads)

    def forward(self, queries, keys, values):

        # Do a linear for each component
        queries = self.query_linear(queries)
        keys = self.key_linear(keys)
        values = self.value_linear(values)

        # Split into multiple heads
        queries = self._split_heads(queries)
        keys = self._split_heads(keys)
        values = self._split_heads(values)

        # Scale queries
        queries *= self.query_scale

        # Combine queries and keys
        logits = torch.matmul(queries, keys.permute(0, 1, 3, 2))

        # Add bias to mask future values
        if self.bias_mask is not None:
            logits += self.bias_mask[:, :, :logits.shape[-2], :logits.shape[-1]].type_as(logits.data)

        # Convert to probabilites
        weights = nn.functional.softmax(logits, dim=-1)

        # Dropout
        weights = self.dropout(weights)

        # Combine with values to get context
        contexts = torch.matmul(weights, values)

        # Merge heads
        contexts = self._merge_heads(contexts)
        # contexts = torch.tanh(contexts)

        # Linear to get output
        outputs = self.output_linear(contexts)

        if self.attention_map is True:
            return outputs, weights

        return outputs


class Conv(nn.Module):
    """
    Convenience class that does padding and convolution for inputs in the format
    [batch_size, sequence length, hidden size]
    """

    def __init__(self, input_size, output_size, kernel_size, pad_type):
        """
        Parameters:
            input_size: Input feature size
            output_size: Output feature size
            kernel_size: Kernel width
            pad_type: left -> pad on the left side (to mask future data_loader),
                      both -> pad on both sides
        """
        super(Conv, self).__init__()
        padding = (kernel_size - 1, 0) if pad_type == 'left' else (kernel_size // 2, (kernel_size - 1) // 2)
        self.pad = nn.ConstantPad1d(padding, 0)
        self.conv = nn.Conv1d(input_size, output_size, kernel_size=kernel_size, padding=0)

    def forward(self, inputs):
        inputs = self.pad(inputs.permute(0, 2, 1))
        outputs = self.conv(inputs).permute(0, 2, 1)

        return outputs


class PositionwiseFeedForward(nn.Module):
    """
    Does a Linear + RELU + Linear on each of the timesteps
    """

    def __init__(self, input_depth, filter_size, output_depth, layer_config='ll', padding='left', dropout=0.0):
        """
        Parameters:
            input_depth: Size of last dimension of input
            filter_size: Hidden size of the middle layer
            output_depth: Size last dimension of the final output
            layer_config: ll -> linear + ReLU + linear
                          cc -> conv + ReLU + conv etc.
            padding: left -> pad on the left side (to mask future data_loader),
                     both -> pad on both sides
            dropout: Dropout probability (Should be non-zero only during training)
        """
        super(PositionwiseFeedForward, self).__init__()

        layers = []
        sizes = ([(input_depth, filter_size)] +
                 [(filter_size, filter_size)] * (len(layer_config) - 2) +
                 [(filter_size, output_depth)])

        for lc, s in zip(list(layer_config), sizes):
            if lc == 'l':
                layers.append(nn.Linear(*s))
            elif lc == 'c':
                layers.append(Conv(*s, kernel_size=3, pad_type=padding))
            else:
                raise ValueError("Unknown layer type {}".format(lc))

        self.layers = nn.ModuleList(layers)
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(dropout)

    def forward(self, inputs):
        x = inputs
        for i, layer in enumerate(self.layers):
            x = layer(x)
            if i < len(self.layers):
                x = self.relu(x)
                x = self.dropout(x)

        return x