music2emo / app.py
kjysmu's picture
Update app.py
537c090 verified
import os
import shutil
import json
import torch
import torchaudio
import numpy as np
import logging
import warnings
import subprocess
import math
import random
import time
from pathlib import Path
from tqdm import tqdm
from PIL import Image
from huggingface_hub import snapshot_download
from omegaconf import DictConfig
import hydra
from hydra.utils import to_absolute_path
from transformers import Wav2Vec2FeatureExtractor, AutoModel
import mir_eval
import pretty_midi as pm
import gradio as gr
from gradio import Markdown
from music21 import converter
import torchaudio.transforms as T
# Custom utility imports
from utils import logger
from utils.btc_model import BTC_model
from utils.transformer_modules import *
from utils.transformer_modules import _gen_timing_signal, _gen_bias_mask
from utils.hparams import HParams
from utils.mir_eval_modules import (
audio_file_to_features, idx2chord, idx2voca_chord,
get_audio_paths, get_lab_paths
)
from utils.mert import FeatureExtractorMERT
from model.linear_mt_attn_ck import FeedforwardModelMTAttnCK
import matplotlib.pyplot as plt
# Suppress unnecessary warnings and logs
warnings.filterwarnings("ignore")
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
# from gradio import Markdown
PITCH_CLASS = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
tonic_signatures = ["A", "A#", "B", "C", "C#", "D", "D#", "E", "F", "F#", "G", "G#"]
mode_signatures = ["major", "minor"] # Major and minor modes
pitch_num_dic = {
'C': 0, 'C#': 1, 'D': 2, 'D#': 3, 'E': 4, 'F': 5,
'F#': 6, 'G': 7, 'G#': 8, 'A': 9, 'A#': 10, 'B': 11
}
minor_major_dic = {
'D-':'C#', 'E-':'D#', 'G-':'F#', 'A-':'G#', 'B-':'A#'
}
minor_major_dic2 = {
'Db':'C#', 'Eb':'D#', 'Gb':'F#', 'Ab':'G#', 'Bb':'A#'
}
shift_major_dic = {
'C': 0, 'C#': 1, 'D': 2, 'D#': 3, 'E': 4, 'F': 5,
'F#': 6, 'G': 7, 'G#': 8, 'A': 9, 'A#': 10, 'B': 11
}
shift_minor_dic = {
'A': 0, 'A#': 1, 'B': 2, 'C': 3, 'C#': 4, 'D': 5,
'D#': 6, 'E': 7, 'F': 8, 'F#': 9, 'G': 10, 'G#': 11,
}
flat_to_sharp_mapping = {
"Cb": "B",
"Db": "C#",
"Eb": "D#",
"Fb": "E",
"Gb": "F#",
"Ab": "G#",
"Bb": "A#"
}
segment_duration = 30
resample_rate = 24000
is_split = True
def normalize_chord(file_path, key, key_type='major'):
with open(file_path, 'r') as f:
lines = f.readlines()
if key == "None":
new_key = "C major"
shift = 0
else:
#print ("asdas",key)
if len(key) == 1:
key = key[0].upper()
else:
key = key[0].upper() + key[1:]
if key in minor_major_dic2:
key = minor_major_dic2[key]
shift = 0
if key_type == "major":
new_key = "C major"
shift = shift_major_dic[key]
else:
new_key = "A minor"
shift = shift_minor_dic[key]
converted_lines = []
for line in lines:
if line.strip(): # Skip empty lines
parts = line.split()
start_time = parts[0]
end_time = parts[1]
chord = parts[2] # The chord is in the 3rd column
if chord == "N":
newchordnorm = "N"
elif chord == "X":
newchordnorm = "X"
elif ":" in chord:
pitch = chord.split(":")[0]
attr = chord.split(":")[1]
pnum = pitch_num_dic [pitch]
new_idx = (pnum - shift)%12
newchord = PITCH_CLASS[new_idx]
newchordnorm = newchord + ":" + attr
else:
pitch = chord
pnum = pitch_num_dic [pitch]
new_idx = (pnum - shift)%12
newchord = PITCH_CLASS[new_idx]
newchordnorm = newchord
converted_lines.append(f"{start_time} {end_time} {newchordnorm}\n")
return converted_lines
def sanitize_key_signature(key):
return key.replace('-', 'b')
def resample_waveform(waveform, original_sample_rate, target_sample_rate):
if original_sample_rate != target_sample_rate:
resampler = T.Resample(original_sample_rate, target_sample_rate)
return resampler(waveform), target_sample_rate
return waveform, original_sample_rate
def split_audio(waveform, sample_rate):
segment_samples = segment_duration * sample_rate
total_samples = waveform.size(0)
segments = []
for start in range(0, total_samples, segment_samples):
end = start + segment_samples
if end <= total_samples:
segment = waveform[start:end]
segments.append(segment)
# In case audio length is shorter than segment length.
if len(segments) == 0:
segment = waveform
segments.append(segment)
return segments
def safe_remove_dir(directory):
"""
Safely removes a directory only if it exists and is empty.
"""
directory = Path(directory)
if directory.exists():
try:
shutil.rmtree(directory)
except FileNotFoundError:
print(f"Warning: Some files in {directory} were already deleted.")
except PermissionError:
print(f"Warning: Permission issue encountered while deleting {directory}.")
except Exception as e:
print(f"Unexpected error while deleting {directory}: {e}")
class Music2emo:
def __init__(
self,
name="amaai-lab/music2emo",
device="cuda:0",
cache_dir=None,
local_files_only=False,
):
# use_cuda = torch.cuda.is_available()
# self.device = torch.device("cuda" if use_cuda else "cpu")
model_weights = "saved_models/J_all.ckpt"
self.device = device
self.feature_extractor = FeatureExtractorMERT(model_name='m-a-p/MERT-v1-95M', device=self.device, sr=resample_rate)
self.model_weights = model_weights
self.music2emo_model = FeedforwardModelMTAttnCK(
input_size= 768 * 2,
output_size_classification=56,
output_size_regression=2
)
checkpoint = torch.load(self.model_weights, map_location=self.device, weights_only=False)
state_dict = checkpoint["state_dict"]
# Adjust the keys in the state_dict
state_dict = {key.replace("model.", ""): value for key, value in state_dict.items()}
# Filter state_dict to match model's keys
model_keys = set(self.music2emo_model.state_dict().keys())
filtered_state_dict = {key: value for key, value in state_dict.items() if key in model_keys}
# Load the filtered state_dict and set the model to evaluation mode
self.music2emo_model.load_state_dict(filtered_state_dict)
self.music2emo_model.to(self.device)
self.music2emo_model.eval()
self.config = HParams.load("./inference/data/run_config.yaml")
self.config.feature['large_voca'] = True
self.config.model['num_chords'] = 170
model_file = './inference/data/btc_model_large_voca.pt'
self.idx_to_voca = idx2voca_chord()
self.btc_model = BTC_model(config=self.config.model).to(self.device)
if os.path.isfile(model_file):
checkpoint = torch.load(model_file, map_location=self.device)
self.mean = checkpoint['mean']
self.std = checkpoint['std']
self.btc_model.load_state_dict(checkpoint['model'])
self.tonic_to_idx = {tonic: idx for idx, tonic in enumerate(tonic_signatures)}
self.mode_to_idx = {mode: idx for idx, mode in enumerate(mode_signatures)}
self.idx_to_tonic = {idx: tonic for tonic, idx in self.tonic_to_idx.items()}
self.idx_to_mode = {idx: mode for mode, idx in self.mode_to_idx.items()}
with open('inference/data/chord.json', 'r') as f:
self.chord_to_idx = json.load(f)
with open('inference/data/chord_inv.json', 'r') as f:
self.idx_to_chord = json.load(f)
self.idx_to_chord = {int(k): v for k, v in self.idx_to_chord.items()} # Ensure keys are ints
with open('inference/data/chord_root.json') as json_file:
self.chordRootDic = json.load(json_file)
with open('inference/data/chord_attr.json') as json_file:
self.chordAttrDic = json.load(json_file)
def predict(self, audio, threshold = 0.5):
feature_dir = Path("./inference/temp_out")
output_dir = Path("./inference/output")
# if feature_dir.exists():
# shutil.rmtree(str(feature_dir))
# if output_dir.exists():
# shutil.rmtree(str(output_dir))
# feature_dir.mkdir(parents=True)
# output_dir.mkdir(parents=True)
# warnings.filterwarnings('ignore')
# logger.logging_verbosity(1)
# mert_dir = feature_dir / "mert"
# mert_dir.mkdir(parents=True)
safe_remove_dir(feature_dir)
safe_remove_dir(output_dir)
feature_dir.mkdir(parents=True, exist_ok=True)
output_dir.mkdir(parents=True, exist_ok=True)
warnings.filterwarnings('ignore')
logger.logging_verbosity(1)
mert_dir = feature_dir / "mert"
mert_dir.mkdir(parents=True, exist_ok=True)
waveform, sample_rate = torchaudio.load(audio)
if waveform.shape[0] > 1:
waveform = waveform.mean(dim=0).unsqueeze(0)
waveform = waveform.squeeze()
waveform, sample_rate = resample_waveform(waveform, sample_rate, resample_rate)
if is_split:
segments = split_audio(waveform, sample_rate)
for i, segment in enumerate(segments):
segment_save_path = os.path.join(mert_dir, f"segment_{i}.npy")
self.feature_extractor.extract_features_from_segment(segment, sample_rate, segment_save_path)
else:
segment_save_path = os.path.join(mert_dir, f"segment_0.npy")
self.feature_extractor.extract_features_from_segment(waveform, sample_rate, segment_save_path)
embeddings = []
layers_to_extract = [5,6]
segment_embeddings = []
for filename in sorted(os.listdir(mert_dir)): # Sort files to ensure sequential order
file_path = os.path.join(mert_dir, filename)
if os.path.isfile(file_path) and filename.endswith('.npy'):
segment = np.load(file_path)
concatenated_features = np.concatenate(
[segment[:, layer_idx, :] for layer_idx in layers_to_extract], axis=1
)
concatenated_features = np.squeeze(concatenated_features) # Shape: 768 * 2 = 1536
segment_embeddings.append(concatenated_features)
segment_embeddings = np.array(segment_embeddings)
if len(segment_embeddings) > 0:
final_embedding_mert = np.mean(segment_embeddings, axis=0)
else:
final_embedding_mert = np.zeros((1536,))
final_embedding_mert = torch.from_numpy(final_embedding_mert)
final_embedding_mert.to(self.device)
# --- Chord feature extract ---
audio_path = audio
audio_id = audio_path.split("/")[-1][:-4]
try:
feature, feature_per_second, song_length_second = audio_file_to_features(audio_path, self.config)
except:
logger.info("audio file failed to load : %s" % audio_path)
assert(False)
logger.info("audio file loaded and feature computation success : %s" % audio_path)
feature = feature.T
feature = (feature - self.mean) / self.std
time_unit = feature_per_second
n_timestep = self.config.model['timestep']
num_pad = n_timestep - (feature.shape[0] % n_timestep)
feature = np.pad(feature, ((0, num_pad), (0, 0)), mode="constant", constant_values=0)
num_instance = feature.shape[0] // n_timestep
start_time = 0.0
lines = []
with torch.no_grad():
self.btc_model.eval()
feature = torch.tensor(feature, dtype=torch.float32).unsqueeze(0).to(self.device)
for t in range(num_instance):
self_attn_output, _ = self.btc_model.self_attn_layers(feature[:, n_timestep * t:n_timestep * (t + 1), :])
prediction, _ = self.btc_model.output_layer(self_attn_output)
prediction = prediction.squeeze()
for i in range(n_timestep):
if t == 0 and i == 0:
prev_chord = prediction[i].item()
continue
if prediction[i].item() != prev_chord:
lines.append(
'%.3f %.3f %s\n' % (start_time, time_unit * (n_timestep * t + i), self.idx_to_voca[prev_chord]))
start_time = time_unit * (n_timestep * t + i)
prev_chord = prediction[i].item()
if t == num_instance - 1 and i + num_pad == n_timestep:
if start_time != time_unit * (n_timestep * t + i):
lines.append('%.3f %.3f %s\n' % (start_time, time_unit * (n_timestep * t + i), self.idx_to_voca[prev_chord]))
break
save_path = os.path.join(feature_dir, os.path.split(audio_path)[-1].replace('.mp3', '').replace('.wav', '') + '.lab')
with open(save_path, 'w') as f:
for line in lines:
f.write(line)
# logger.info("label file saved : %s" % save_path)
# lab file to midi file
starts, ends, pitchs = list(), list(), list()
intervals, chords = mir_eval.io.load_labeled_intervals(save_path)
for p in range(12):
for i, (interval, chord) in enumerate(zip(intervals, chords)):
root_num, relative_bitmap, _ = mir_eval.chord.encode(chord)
tmp_label = mir_eval.chord.rotate_bitmap_to_root(relative_bitmap, root_num)[p]
if i == 0:
start_time = interval[0]
label = tmp_label
continue
if tmp_label != label:
if label == 1.0:
starts.append(start_time), ends.append(interval[0]), pitchs.append(p + 48)
start_time = interval[0]
label = tmp_label
if i == (len(intervals) - 1):
if label == 1.0:
starts.append(start_time), ends.append(interval[1]), pitchs.append(p + 48)
midi = pm.PrettyMIDI()
instrument = pm.Instrument(program=0)
for start, end, pitch in zip(starts, ends, pitchs):
pm_note = pm.Note(velocity=120, pitch=pitch, start=start, end=end)
instrument.notes.append(pm_note)
midi.instruments.append(instrument)
midi.write(save_path.replace('.lab', '.midi'))
try:
midi_file = converter.parse(save_path.replace('.lab', '.midi'))
key_signature = str(midi_file.analyze('key'))
except Exception as e:
key_signature = "None"
key_parts = key_signature.split()
key_signature = sanitize_key_signature(key_parts[0]) # Sanitize key signature
key_type = key_parts[1] if len(key_parts) > 1 else 'major'
# --- Key feature (Tonic and Mode separation) ---
if key_signature == "None":
mode = "major"
else:
mode = key_signature.split()[-1]
encoded_mode = self.mode_to_idx.get(mode, 0)
mode_tensor = torch.tensor([encoded_mode], dtype=torch.long).to(self.device)
converted_lines = normalize_chord(save_path, key_signature, key_type)
lab_norm_path = save_path[:-4] + "_norm.lab"
# Write the converted lines to the new file
with open(lab_norm_path, 'w') as f:
f.writelines(converted_lines)
chords = []
if not os.path.exists(lab_norm_path):
chords.append((float(0), float(0), "N"))
else:
with open(lab_norm_path, 'r') as file:
for line in file:
start, end, chord = line.strip().split()
chords.append((float(start), float(end), chord))
encoded = []
encoded_root= []
encoded_attr=[]
durations = []
for start, end, chord in chords:
chord_arr = chord.split(":")
if len(chord_arr) == 1:
chordRootID = self.chordRootDic[chord_arr[0]]
if chord_arr[0] == "N" or chord_arr[0] == "X":
chordAttrID = 0
else:
chordAttrID = 1
elif len(chord_arr) == 2:
chordRootID = self.chordRootDic[chord_arr[0]]
chordAttrID = self.chordAttrDic[chord_arr[1]]
encoded_root.append(chordRootID)
encoded_attr.append(chordAttrID)
if chord in self.chord_to_idx:
encoded.append(self.chord_to_idx[chord])
else:
print(f"Warning: Chord {chord} not found in chord.json. Skipping.")
durations.append(end - start) # Compute duration
encoded_chords = np.array(encoded)
encoded_chords_root = np.array(encoded_root)
encoded_chords_attr = np.array(encoded_attr)
# Maximum sequence length for chords
max_sequence_length = 100 # Define this globally or as a parameter
# Truncate or pad chord sequences
if len(encoded_chords) > max_sequence_length:
# Truncate to max length
encoded_chords = encoded_chords[:max_sequence_length]
encoded_chords_root = encoded_chords_root[:max_sequence_length]
encoded_chords_attr = encoded_chords_attr[:max_sequence_length]
else:
# Pad with zeros (padding value for chords)
padding = [0] * (max_sequence_length - len(encoded_chords))
encoded_chords = np.concatenate([encoded_chords, padding])
encoded_chords_root = np.concatenate([encoded_chords_root, padding])
encoded_chords_attr = np.concatenate([encoded_chords_attr, padding])
# Convert to tensor
chords_tensor = torch.tensor(encoded_chords, dtype=torch.long).to(self.device)
chords_root_tensor = torch.tensor(encoded_chords_root, dtype=torch.long).to(self.device)
chords_attr_tensor = torch.tensor(encoded_chords_attr, dtype=torch.long).to(self.device)
model_input_dic = {
"x_mert": final_embedding_mert.unsqueeze(0),
"x_chord": chords_tensor.unsqueeze(0),
"x_chord_root": chords_root_tensor.unsqueeze(0),
"x_chord_attr": chords_attr_tensor.unsqueeze(0),
"x_key": mode_tensor.unsqueeze(0)
}
model_input_dic = {k: v.to(self.device) for k, v in model_input_dic.items()}
classification_output, regression_output = self.music2emo_model(model_input_dic)
# probs = torch.sigmoid(classification_output)
tag_list = np.load ( "./inference/data/tag_list.npy")
tag_list = tag_list[127:]
mood_list = [t.replace("mood/theme---", "") for t in tag_list]
threshold = threshold
# Get probabilities
probs = torch.sigmoid(classification_output).squeeze().tolist()
# Include both mood names and scores
predicted_moods_with_scores = [
{"mood": mood_list[i], "score": round(p, 4)} # Rounded for better readability
for i, p in enumerate(probs) if p > threshold
]
# Include both mood names and scores
predicted_moods_with_scores_all = [
{"mood": mood_list[i], "score": round(p, 4)} # Rounded for better readability
for i, p in enumerate(probs)
]
# Sort by highest probability
predicted_moods_with_scores.sort(key=lambda x: x["score"], reverse=True)
valence, arousal = regression_output.squeeze().tolist()
model_output_dic = {
"valence": valence,
"arousal": arousal,
"predicted_moods": predicted_moods_with_scores,
"predicted_moods_all": predicted_moods_with_scores_all
}
# predicted_moods = [mood_list[i] for i, p in enumerate(probs.squeeze().tolist()) if p > threshold]
# valence, arousal = regression_output.squeeze().tolist()
# model_output_dic = {
# "valence": valence,
# "arousal": arousal,
# "predicted_moods": predicted_moods
# }
return model_output_dic
# Music2Emo Model Initialization
if torch.cuda.is_available():
music2emo = Music2emo()
else:
music2emo = Music2emo(device="cpu")
# Plot Functions
def plot_mood_probabilities(predicted_moods_with_scores):
"""Plot mood probabilities as a horizontal bar chart."""
if not predicted_moods_with_scores:
return None
# Extract mood names and their scores
moods = [m["mood"] for m in predicted_moods_with_scores]
probs = [m["score"] for m in predicted_moods_with_scores]
# Sort moods by probability
sorted_indices = np.argsort(probs)[::-1]
sorted_probs = [probs[i] for i in sorted_indices]
sorted_moods = [moods[i] for i in sorted_indices]
# Create bar chart
fig, ax = plt.subplots(figsize=(8, 4))
ax.barh(sorted_moods[:10], sorted_probs[:10], color="#4CAF50")
ax.set_xlabel("Probability")
ax.set_title("Top 10 Predicted Mood Tags")
ax.invert_yaxis()
return fig
def plot_valence_arousal(valence, arousal):
"""Plot valence-arousal on a 2D circumplex model."""
fig, ax = plt.subplots(figsize=(4, 4))
ax.scatter(valence, arousal, color="red", s=100)
ax.set_xlim(1, 9)
ax.set_ylim(1, 9)
# Add midpoint lines
ax.axhline(y=5, color='gray', linestyle='--', linewidth=1) # Horizontal middle line
ax.axvline(x=5, color='gray', linestyle='--', linewidth=1) # Vertical middle line
# Labels & Grid
ax.set_xlabel("Valence (Positivity)")
ax.set_ylabel("Arousal (Intensity)")
ax.set_title("Valence-Arousal Plot")
ax.legend()
ax.grid(True, linestyle="--", alpha=0.6)
return fig
# Prediction Formatting
def format_prediction(model_output_dic):
"""Format the model output in a structured format"""
valence = model_output_dic["valence"]
arousal = model_output_dic["arousal"]
predicted_moods_with_scores = model_output_dic["predicted_moods"]
predicted_moods_with_scores_all = model_output_dic["predicted_moods_all"]
# Generate charts
va_chart = plot_valence_arousal(valence, arousal)
mood_chart = plot_mood_probabilities(predicted_moods_with_scores_all)
# Format mood output with scores
if predicted_moods_with_scores:
moods_text = ", ".join(
[f"{m['mood']} ({m['score']:.2f})" for m in predicted_moods_with_scores]
)
else:
moods_text = "No significant moods detected."
# Create formatted output
output_text = f"""🎭 Predicted Mood Tags: {moods_text}
πŸ’– Valence: {valence:.2f} (Scale: 1-9)
⚑ Arousal: {arousal:.2f} (Scale: 1-9)"""
return output_text, va_chart, mood_chart
# Gradio UI Elements
title="🎡 Music2Emo: Toward Unified Music Emotion Recognition"
description_text = """
<p> Upload an audio file to analyze its emotional characteristics using Music2Emo. The model will predict: 1) Mood tags describing the emotional content, 2) Valence score (1-9 scale, representing emotional positivity), and 3) Arousal score (1-9 scale, representing emotional intensity)
<br/><br/> This is the demo for Music2Emo for music emotion recognition: <a href="https://arxiv.org/abs/2502.03979">Read our paper.</a>
</p>
"""
# Custom CSS Styling
css = """
.gradio-container {
font-family: 'Inter', -apple-system, system-ui, sans-serif;
}
.gr-button {
color: white;
background: #4CAF50;
border-radius: 8px;
padding: 10px;
}
/* Add padding to the top of the two plot boxes */
.gr-box {
padding-top: 25px !important;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(f"<h1 style='text-align: center;'>{title}</h1>")
gr.Markdown(description_text)
# Notes Section
gr.Markdown("""
### πŸ“ Notes:
- **Supported audio formats:** MP3, WAV
- **Recommended:** High-quality audio files
""")
with gr.Row():
# Left Panel (Input)
with gr.Column(scale=1):
input_audio = gr.Audio(
label="Upload Audio File",
type="filepath"
)
threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.01,
label="Mood Detection Threshold",
info="Adjust threshold for mood detection"
)
predict_btn = gr.Button("🎭 Analyze Emotions", variant="primary")
# Right Panel (Output)
with gr.Column(scale=1):
output_text = gr.Textbox(
label="Analysis Results",
lines=4,
interactive=False # Prevent user input
)
# Ensure both plots have padding on top
with gr.Row(equal_height=True):
mood_chart = gr.Plot(label="Mood Probabilities", scale=2, elem_classes=["gr-box"])
va_chart = gr.Plot(label="Valence-Arousal Space", scale=1, elem_classes=["gr-box"])
predict_btn.click(
fn=lambda audio, thresh: format_prediction(music2emo.predict(audio, thresh)),
inputs=[input_audio, threshold],
outputs=[output_text, va_chart, mood_chart]
)
# Launch the App
demo.queue().launch()