Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
import pandas as pd
|
6 |
+
from datasets import Dataset
|
7 |
+
from transformers import (
|
8 |
+
AutoModelForCausalLM,
|
9 |
+
AutoTokenizer,
|
10 |
+
TrainingArguments,
|
11 |
+
Trainer,
|
12 |
+
DataCollatorForLanguageModeling
|
13 |
+
)
|
14 |
+
from peft import (
|
15 |
+
LoraConfig,
|
16 |
+
get_peft_model,
|
17 |
+
prepare_model_for_kbit_training,
|
18 |
+
PeftModel
|
19 |
+
)
|
20 |
+
|
21 |
+
# Set environment variable for cache directory
|
22 |
+
os.environ['TRANSFORMERS_CACHE'] = '/tmp/hf_cache'
|
23 |
+
os.makedirs('/tmp/hf_cache', exist_ok=True)
|
24 |
+
|
25 |
+
def sample_from_csv(csv_file, sample_size=100):
|
26 |
+
"""Sample from CSV file and format for training"""
|
27 |
+
df = pd.read_csv(csv_file)
|
28 |
+
|
29 |
+
# Display CSV info
|
30 |
+
print(f"CSV columns: {df.columns.tolist()}")
|
31 |
+
print(f"Total rows in CSV: {len(df)}")
|
32 |
+
|
33 |
+
# Try to identify teacher and student columns
|
34 |
+
teacher_col = None
|
35 |
+
student_col = None
|
36 |
+
|
37 |
+
for col in df.columns:
|
38 |
+
col_lower = col.lower()
|
39 |
+
if 'teacher' in col_lower or 'instructor' in col_lower or 'prompt' in col_lower:
|
40 |
+
teacher_col = col
|
41 |
+
elif 'student' in col_lower or 'response' in col_lower or 'answer' in col_lower:
|
42 |
+
student_col = col
|
43 |
+
|
44 |
+
# If we couldn't identify columns, use the first two
|
45 |
+
if teacher_col is None or student_col is None:
|
46 |
+
teacher_col = df.columns[0]
|
47 |
+
student_col = df.columns[1]
|
48 |
+
|
49 |
+
# Sample rows
|
50 |
+
if sample_size >= len(df):
|
51 |
+
sampled_df = df
|
52 |
+
else:
|
53 |
+
sampled_df = df.sample(n=sample_size, random_state=42)
|
54 |
+
|
55 |
+
# Format data
|
56 |
+
texts = []
|
57 |
+
for _, row in sampled_df.iterrows():
|
58 |
+
teacher_text = str(row[teacher_col]).strip()
|
59 |
+
student_text = str(row[student_col]).strip()
|
60 |
+
|
61 |
+
# Skip rows with empty values
|
62 |
+
if not teacher_text or not student_text or teacher_text == 'nan' or student_text == 'nan':
|
63 |
+
continue
|
64 |
+
|
65 |
+
# Format according to the document format:
|
66 |
+
# <s> [INST] Teacher ** <Dialogue> [/INST] Student** <Dialogue> </s>
|
67 |
+
formatted_text = f"<s> [INST] Teacher ** {teacher_text} [/INST] Student** {student_text} </s>"
|
68 |
+
texts.append(formatted_text)
|
69 |
+
|
70 |
+
return Dataset.from_dict({"text": texts})
|
71 |
+
|
72 |
+
def finetune_model(csv_file, sample_size=100, num_epochs=3, progress=gr.Progress()):
|
73 |
+
"""Fine-tune the model and return results"""
|
74 |
+
# Check GPU
|
75 |
+
if torch.cuda.is_available():
|
76 |
+
print(f"GPU available: {torch.cuda.get_device_name(0)}")
|
77 |
+
device = torch.device("cuda")
|
78 |
+
else:
|
79 |
+
print("No GPU available, fine-tuning will be extremely slow!")
|
80 |
+
device = torch.device("cpu")
|
81 |
+
|
82 |
+
# Sample data
|
83 |
+
progress(0.1, "Sampling data from CSV...")
|
84 |
+
dataset = sample_from_csv(csv_file, sample_size)
|
85 |
+
|
86 |
+
# Split dataset
|
87 |
+
dataset_split = dataset.train_test_split(test_size=0.1)
|
88 |
+
|
89 |
+
# Load tokenizer
|
90 |
+
progress(0.2, "Loading tokenizer...")
|
91 |
+
model_name = "mistralai/Mistral-7B-v0.1"
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
93 |
+
tokenizer.pad_token = tokenizer.eos_token
|
94 |
+
|
95 |
+
# Tokenize dataset
|
96 |
+
def tokenize_function(examples):
|
97 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
98 |
+
|
99 |
+
progress(0.3, "Tokenizing dataset...")
|
100 |
+
tokenized_datasets = dataset_split.map(tokenize_function, batched=True)
|
101 |
+
|
102 |
+
# Load model with LoRA configuration
|
103 |
+
progress(0.4, "Loading model...")
|
104 |
+
lora_config = LoraConfig(
|
105 |
+
r=8,
|
106 |
+
lora_alpha=16,
|
107 |
+
target_modules=["q_proj", "v_proj", "k_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
108 |
+
lora_dropout=0.05,
|
109 |
+
bias="none",
|
110 |
+
task_type="CAUSAL_LM"
|
111 |
+
)
|
112 |
+
|
113 |
+
model = AutoModelForCausalLM.from_pretrained(
|
114 |
+
model_name,
|
115 |
+
torch_dtype=torch.float16,
|
116 |
+
device_map="auto",
|
117 |
+
)
|
118 |
+
|
119 |
+
# Prepare model for LoRA training
|
120 |
+
model = prepare_model_for_kbit_training(model)
|
121 |
+
model = get_peft_model(model, lora_config)
|
122 |
+
|
123 |
+
# Training arguments
|
124 |
+
output_dir = "mistral7b_finetuned"
|
125 |
+
training_args = TrainingArguments(
|
126 |
+
output_dir=output_dir,
|
127 |
+
num_train_epochs=num_epochs,
|
128 |
+
per_device_train_batch_size=1,
|
129 |
+
gradient_accumulation_steps=4,
|
130 |
+
save_steps=50,
|
131 |
+
logging_steps=10,
|
132 |
+
learning_rate=2e-4,
|
133 |
+
weight_decay=0.001,
|
134 |
+
fp16=True,
|
135 |
+
warmup_steps=50,
|
136 |
+
lr_scheduler_type="cosine",
|
137 |
+
report_to="none", # Disable wandb
|
138 |
+
)
|
139 |
+
|
140 |
+
# Initialize trainer
|
141 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
142 |
+
trainer = Trainer(
|
143 |
+
model=model,
|
144 |
+
args=training_args,
|
145 |
+
train_dataset=tokenized_datasets["train"],
|
146 |
+
eval_dataset=tokenized_datasets["test"],
|
147 |
+
data_collator=data_collator,
|
148 |
+
)
|
149 |
+
|
150 |
+
# Train model
|
151 |
+
progress(0.5, "Training model...")
|
152 |
+
trainer.train()
|
153 |
+
|
154 |
+
# Save model
|
155 |
+
progress(0.9, "Saving model...")
|
156 |
+
trainer.model.save_pretrained(output_dir)
|
157 |
+
tokenizer.save_pretrained(output_dir)
|
158 |
+
|
159 |
+
# Test with sample prompts
|
160 |
+
progress(0.95, "Testing model...")
|
161 |
+
test_prompts = [
|
162 |
+
"How was the Math exam?",
|
163 |
+
"Good morning students! How are you all?",
|
164 |
+
"What should you do if you get into a fight with a friend?",
|
165 |
+
"Did you complete your science project?",
|
166 |
+
"What did you learn in class today?"
|
167 |
+
]
|
168 |
+
|
169 |
+
# Load the fine-tuned model for inference
|
170 |
+
fine_tuned_model = PeftModel.from_pretrained(
|
171 |
+
model,
|
172 |
+
output_dir,
|
173 |
+
device_map="auto",
|
174 |
+
)
|
175 |
+
|
176 |
+
# Generate responses
|
177 |
+
results = []
|
178 |
+
for prompt in test_prompts:
|
179 |
+
formatted_prompt = f"<s> [INST] Teacher ** {prompt} [/INST] Student**"
|
180 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
|
181 |
+
|
182 |
+
with torch.no_grad():
|
183 |
+
outputs = fine_tuned_model.generate(
|
184 |
+
**inputs,
|
185 |
+
max_length=200,
|
186 |
+
temperature=0.7,
|
187 |
+
top_p=0.95,
|
188 |
+
do_sample=True,
|
189 |
+
)
|
190 |
+
|
191 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
192 |
+
student_part = response.split("Student**")[1].strip() if "Student**" in response else response
|
193 |
+
|
194 |
+
results.append({
|
195 |
+
"prompt": prompt,
|
196 |
+
"response": student_part
|
197 |
+
})
|
198 |
+
|
199 |
+
# Save results
|
200 |
+
with open("test_results.json", "w") as f:
|
201 |
+
json.dump(results, f, indent=2)
|
202 |
+
|
203 |
+
progress(1.0, "Completed!")
|
204 |
+
return results
|
205 |
+
|
206 |
+
# Define Gradio interface
|
207 |
+
with gr.Blocks() as demo:
|
208 |
+
gr.Markdown("# Mistral 7B Fine-Tuning for Student Bot")
|
209 |
+
|
210 |
+
with gr.Tab("Fine-tune Model"):
|
211 |
+
with gr.Row():
|
212 |
+
csv_input = gr.File(label="Upload Teacher-Student CSV")
|
213 |
+
|
214 |
+
with gr.Row():
|
215 |
+
sample_size = gr.Slider(minimum=10, maximum=1000, value=100, step=10, label="Sample Size")
|
216 |
+
epochs = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Number of Epochs")
|
217 |
+
|
218 |
+
with gr.Row():
|
219 |
+
start_btn = gr.Button("Start Fine-Tuning")
|
220 |
+
|
221 |
+
with gr.Row():
|
222 |
+
output = gr.JSON(label="Results")
|
223 |
+
|
224 |
+
start_btn.click(finetune_model, inputs=[csv_input, sample_size, epochs], outputs=[output])
|
225 |
+
|
226 |
+
with gr.Tab("About"):
|
227 |
+
gr.Markdown("""
|
228 |
+
## Fine-Tuning Mistral 7B for Student Bot
|
229 |
+
|
230 |
+
This app fine-tunes the Mistral 7B model to respond like a student to teacher prompts.
|
231 |
+
|
232 |
+
### Requirements
|
233 |
+
- CSV file with teacher-student conversation pairs
|
234 |
+
- GPU acceleration (provided by this Space)
|
235 |
+
|
236 |
+
### Process
|
237 |
+
1. Upload your CSV file
|
238 |
+
2. Set sample size and number of epochs
|
239 |
+
3. Click "Start Fine-Tuning"
|
240 |
+
4. View test results with sample prompts
|
241 |
+
""")
|
242 |
+
|
243 |
+
# Launch app
|
244 |
+
demo.launch()
|