Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,30 @@
|
|
1 |
-
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from huggingface_hub import login
|
4 |
|
5 |
-
#
|
|
|
|
|
|
|
|
|
6 |
hf_token = os.environ.get("HF_TOKEN")
|
7 |
if hf_token:
|
8 |
login(token=hf_token)
|
@@ -10,13 +32,283 @@ if hf_token:
|
|
10 |
else:
|
11 |
print("No Hugging Face token found. You may encounter access issues with gated models.")
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
model_name,
|
19 |
-
torch_dtype=torch.float16,
|
20 |
-
device_map="auto",
|
21 |
-
token=hf_token
|
22 |
-
)
|
|
|
1 |
+
import gradio as gr
|
2 |
import os
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
import pandas as pd
|
6 |
+
from datasets import Dataset
|
7 |
+
from transformers import (
|
8 |
+
AutoModelForCausalLM,
|
9 |
+
AutoTokenizer,
|
10 |
+
TrainingArguments,
|
11 |
+
Trainer,
|
12 |
+
DataCollatorForLanguageModeling
|
13 |
+
)
|
14 |
+
from peft import (
|
15 |
+
LoraConfig,
|
16 |
+
get_peft_model,
|
17 |
+
prepare_model_for_kbit_training,
|
18 |
+
PeftModel
|
19 |
+
)
|
20 |
+
import spaces
|
21 |
from huggingface_hub import login
|
22 |
|
23 |
+
# Set environment variable for cache directory
|
24 |
+
os.environ['TRANSFORMERS_CACHE'] = '/tmp/hf_cache'
|
25 |
+
os.makedirs('/tmp/hf_cache', exist_ok=True)
|
26 |
+
|
27 |
+
# Get token from environment variable and log in
|
28 |
hf_token = os.environ.get("HF_TOKEN")
|
29 |
if hf_token:
|
30 |
login(token=hf_token)
|
|
|
32 |
else:
|
33 |
print("No Hugging Face token found. You may encounter access issues with gated models.")
|
34 |
|
35 |
+
def sample_from_csv(csv_file, sample_size=100):
|
36 |
+
"""Sample from CSV file and format for training"""
|
37 |
+
df = pd.read_csv(csv_file)
|
38 |
+
|
39 |
+
# Display CSV info
|
40 |
+
print(f"CSV columns: {df.columns.tolist()}")
|
41 |
+
print(f"Total rows in CSV: {len(df)}")
|
42 |
+
|
43 |
+
# Try to identify teacher and student columns
|
44 |
+
teacher_col = None
|
45 |
+
student_col = None
|
46 |
+
|
47 |
+
for col in df.columns:
|
48 |
+
col_lower = col.lower()
|
49 |
+
if 'teacher' in col_lower or 'instructor' in col_lower or 'prompt' in col_lower:
|
50 |
+
teacher_col = col
|
51 |
+
elif 'student' in col_lower or 'response' in col_lower or 'answer' in col_lower:
|
52 |
+
student_col = col
|
53 |
+
|
54 |
+
# If we couldn't identify columns, use the first two
|
55 |
+
if teacher_col is None or student_col is None:
|
56 |
+
teacher_col = df.columns[0]
|
57 |
+
student_col = df.columns[1]
|
58 |
+
print(f"Using columns: {teacher_col} (teacher) and {student_col} (student)")
|
59 |
+
else:
|
60 |
+
print(f"Identified columns: {teacher_col} (teacher) and {student_col} (student)")
|
61 |
+
|
62 |
+
# Sample rows
|
63 |
+
if sample_size >= len(df):
|
64 |
+
sampled_df = df
|
65 |
+
else:
|
66 |
+
sampled_df = df.sample(n=sample_size, random_state=42)
|
67 |
+
|
68 |
+
# Format data
|
69 |
+
texts = []
|
70 |
+
for _, row in sampled_df.iterrows():
|
71 |
+
teacher_text = str(row[teacher_col]).strip()
|
72 |
+
student_text = str(row[student_col]).strip()
|
73 |
+
|
74 |
+
# Skip rows with empty values
|
75 |
+
if not teacher_text or not student_text or teacher_text == 'nan' or student_text == 'nan':
|
76 |
+
continue
|
77 |
+
|
78 |
+
# Format according to the document format:
|
79 |
+
# <s> [INST] Teacher ** <Dialogue> [/INST] Student** <Dialogue> </s>
|
80 |
+
formatted_text = f"<s> [INST] Teacher ** {teacher_text} [/INST] Student** {student_text} </s>"
|
81 |
+
texts.append(formatted_text)
|
82 |
+
|
83 |
+
print(f"Created {len(texts)} formatted examples")
|
84 |
+
return Dataset.from_dict({"text": texts})
|
85 |
+
|
86 |
+
@spaces.GPU
|
87 |
+
def finetune_model(csv_file, sample_size=100, num_epochs=3, progress=gr.Progress()):
|
88 |
+
"""Fine-tune the model and return results"""
|
89 |
+
# Check GPU
|
90 |
+
if torch.cuda.is_available():
|
91 |
+
print(f"GPU available: {torch.cuda.get_device_name(0)}")
|
92 |
+
device = torch.device("cuda")
|
93 |
+
else:
|
94 |
+
print("No GPU available, fine-tuning will be extremely slow!")
|
95 |
+
device = torch.device("cpu")
|
96 |
+
|
97 |
+
# Sample data
|
98 |
+
progress(0.1, "Sampling data from CSV...")
|
99 |
+
dataset = sample_from_csv(csv_file, sample_size)
|
100 |
+
|
101 |
+
# Split dataset
|
102 |
+
dataset_split = dataset.train_test_split(test_size=0.1)
|
103 |
+
|
104 |
+
# Load tokenizer
|
105 |
+
progress(0.2, "Loading tokenizer...")
|
106 |
+
|
107 |
+
# Try the non-gated Mistral model first
|
108 |
+
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
|
109 |
+
try:
|
110 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
111 |
+
print(f"Successfully loaded tokenizer for {model_name}")
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Error loading {model_name}: {e}")
|
114 |
+
print("Falling back to original Mistral model with token authentication...")
|
115 |
+
model_name = "mistralai/Mistral-7B-v0.1"
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
117 |
+
|
118 |
+
tokenizer.pad_token = tokenizer.eos_token
|
119 |
+
|
120 |
+
# Tokenize dataset
|
121 |
+
def tokenize_function(examples):
|
122 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
123 |
+
|
124 |
+
progress(0.3, "Tokenizing dataset...")
|
125 |
+
tokenized_datasets = dataset_split.map(tokenize_function, batched=True)
|
126 |
+
|
127 |
+
# Load model with LoRA configuration
|
128 |
+
progress(0.4, "Loading model...")
|
129 |
+
lora_config = LoraConfig(
|
130 |
+
r=8,
|
131 |
+
lora_alpha=16,
|
132 |
+
target_modules=["q_proj", "v_proj", "k_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
133 |
+
lora_dropout=0.05,
|
134 |
+
bias="none",
|
135 |
+
task_type="CAUSAL_LM"
|
136 |
+
)
|
137 |
+
|
138 |
+
model = AutoModelForCausalLM.from_pretrained(
|
139 |
+
model_name,
|
140 |
+
torch_dtype=torch.float16,
|
141 |
+
device_map="auto",
|
142 |
+
token=hf_token,
|
143 |
+
)
|
144 |
+
|
145 |
+
# Prepare model for LoRA training
|
146 |
+
model = prepare_model_for_kbit_training(model)
|
147 |
+
model = get_peft_model(model, lora_config)
|
148 |
+
|
149 |
+
# Print model info
|
150 |
+
print(f"Model loaded: {model_name}")
|
151 |
+
model_params = sum(p.numel() for p in model.parameters())
|
152 |
+
print(f"Model parameters: {model_params:,}")
|
153 |
+
|
154 |
+
# Training arguments
|
155 |
+
output_dir = "mistral7b_finetuned"
|
156 |
+
training_args = TrainingArguments(
|
157 |
+
output_dir=output_dir,
|
158 |
+
num_train_epochs=num_epochs,
|
159 |
+
per_device_train_batch_size=1,
|
160 |
+
gradient_accumulation_steps=4,
|
161 |
+
save_steps=50,
|
162 |
+
logging_steps=10,
|
163 |
+
learning_rate=2e-4,
|
164 |
+
weight_decay=0.001,
|
165 |
+
fp16=True,
|
166 |
+
warmup_steps=50,
|
167 |
+
lr_scheduler_type="cosine",
|
168 |
+
report_to="none", # Disable wandb
|
169 |
+
)
|
170 |
+
|
171 |
+
# Initialize trainer
|
172 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
173 |
+
trainer = Trainer(
|
174 |
+
model=model,
|
175 |
+
args=training_args,
|
176 |
+
train_dataset=tokenized_datasets["train"],
|
177 |
+
eval_dataset=tokenized_datasets["test"],
|
178 |
+
data_collator=data_collator,
|
179 |
+
)
|
180 |
+
|
181 |
+
# Train model
|
182 |
+
progress(0.5, "Training model...")
|
183 |
+
trainer.train()
|
184 |
+
|
185 |
+
# Save model
|
186 |
+
progress(0.9, "Saving model...")
|
187 |
+
trainer.model.save_pretrained(output_dir)
|
188 |
+
tokenizer.save_pretrained(output_dir)
|
189 |
+
|
190 |
+
# Test with sample prompts
|
191 |
+
progress(0.95, "Testing model...")
|
192 |
+
test_prompts = [
|
193 |
+
"How was the Math exam?",
|
194 |
+
"Good morning students! How are you all?",
|
195 |
+
"What should you do if you get into a fight with a friend?",
|
196 |
+
"Did you complete your science project?",
|
197 |
+
"What did you learn in class today?"
|
198 |
+
]
|
199 |
+
|
200 |
+
# Load the fine-tuned model for inference
|
201 |
+
fine_tuned_model = PeftModel.from_pretrained(
|
202 |
+
model,
|
203 |
+
output_dir,
|
204 |
+
device_map="auto",
|
205 |
+
)
|
206 |
+
|
207 |
+
# Generate responses
|
208 |
+
results = []
|
209 |
+
for prompt in test_prompts:
|
210 |
+
formatted_prompt = f"<s> [INST] Teacher ** {prompt} [/INST] Student**"
|
211 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
|
212 |
+
|
213 |
+
with torch.no_grad():
|
214 |
+
outputs = fine_tuned_model.generate(
|
215 |
+
**inputs,
|
216 |
+
max_length=200,
|
217 |
+
temperature=0.7,
|
218 |
+
top_p=0.95,
|
219 |
+
do_sample=True,
|
220 |
+
)
|
221 |
+
|
222 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
223 |
+
student_part = response.split("Student**")[1].strip() if "Student**" in response else response
|
224 |
+
|
225 |
+
results.append({
|
226 |
+
"prompt": prompt,
|
227 |
+
"response": student_part
|
228 |
+
})
|
229 |
+
|
230 |
+
# Save results
|
231 |
+
with open("test_results.json", "w") as f:
|
232 |
+
json.dump(results, f, indent=2)
|
233 |
+
|
234 |
+
progress(1.0, "Completed!")
|
235 |
+
return results
|
236 |
+
|
237 |
+
# Define Gradio interface
|
238 |
+
with gr.Blocks() as demo:
|
239 |
+
gr.Markdown("# Mistral 7B Fine-Tuning for Student Bot")
|
240 |
+
|
241 |
+
with gr.Tab("System Check"):
|
242 |
+
check_btn = gr.Button("Check GPU and Authentication Status")
|
243 |
+
system_output = gr.Textbox(label="System Status", lines=5)
|
244 |
+
|
245 |
+
@spaces.GPU
|
246 |
+
def check_system():
|
247 |
+
status = []
|
248 |
+
# Check GPU
|
249 |
+
if torch.cuda.is_available():
|
250 |
+
status.append(f"β
GPU AVAILABLE: {torch.cuda.get_device_name(0)}")
|
251 |
+
gpu_memory = f"Total GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB"
|
252 |
+
status.append(gpu_memory)
|
253 |
+
else:
|
254 |
+
status.append("β NO GPU DETECTED.")
|
255 |
+
|
256 |
+
# Check HF token
|
257 |
+
if os.environ.get("HF_TOKEN"):
|
258 |
+
status.append("β
Hugging Face token found")
|
259 |
+
else:
|
260 |
+
status.append("β No Hugging Face token found. You may encounter access issues with gated models.")
|
261 |
+
|
262 |
+
# Check if we can access Mistral model
|
263 |
+
try:
|
264 |
+
from huggingface_hub import model_info
|
265 |
+
info = model_info("mistralai/Mistral-7B-Instruct-v0.2", token=hf_token)
|
266 |
+
status.append(f"β
Access to Mistral model verified: {info.modelId}")
|
267 |
+
except Exception as e:
|
268 |
+
status.append(f"β Cannot access Mistral model: {str(e)}")
|
269 |
+
|
270 |
+
return "\n".join(status)
|
271 |
+
|
272 |
+
check_btn.click(check_system, inputs=[], outputs=[system_output])
|
273 |
+
|
274 |
+
with gr.Tab("Fine-tune Model"):
|
275 |
+
with gr.Row():
|
276 |
+
csv_input = gr.File(label="Upload Teacher-Student CSV")
|
277 |
+
|
278 |
+
with gr.Row():
|
279 |
+
sample_size = gr.Slider(minimum=10, maximum=1000, value=100, step=10, label="Sample Size")
|
280 |
+
epochs = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Number of Epochs")
|
281 |
+
|
282 |
+
with gr.Row():
|
283 |
+
start_btn = gr.Button("Start Fine-Tuning")
|
284 |
+
|
285 |
+
with gr.Row():
|
286 |
+
output = gr.JSON(label="Results")
|
287 |
+
|
288 |
+
start_btn.click(finetune_model, inputs=[csv_input, sample_size, epochs], outputs=[output])
|
289 |
+
|
290 |
+
with gr.Tab("About"):
|
291 |
+
gr.Markdown("""
|
292 |
+
## Fine-Tuning Mistral 7B for Student Bot
|
293 |
+
|
294 |
+
This app fine-tunes the Mistral 7B model to respond like a student to teacher prompts.
|
295 |
+
|
296 |
+
### Requirements
|
297 |
+
- CSV file with teacher-student conversation pairs
|
298 |
+
- GPU acceleration (provided by this Space)
|
299 |
+
- Hugging Face authentication for accessing gated models
|
300 |
+
|
301 |
+
### Process
|
302 |
+
1. Upload your CSV file
|
303 |
+
2. Set sample size and number of epochs
|
304 |
+
3. Click "Start Fine-Tuning"
|
305 |
+
4. View test results with sample prompts
|
306 |
+
|
307 |
+
### Important Notes
|
308 |
+
- The app tries to use Mistral-7B-Instruct-v0.2 which is not gated
|
309 |
+
- If that fails, it falls back to the original Mistral-7B-v0.1 model (which requires authentication)
|
310 |
+
- Fine-tuning can take several hours depending on your sample size and epochs
|
311 |
+
""")
|
312 |
|
313 |
+
# Launch app
|
314 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|