Spaces:
Sleeping
Sleeping
File size: 2,360 Bytes
ec76126 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import streamlit as st
import json
import requests
from transformers import pipeline
import wikipediaapi
# Load historical figures and tutor topics from Wikipedia dynamically
wiki_wiki = wikipediaapi.Wikipedia("en")
# Load local AI model (Mistral-7B or Llama-2)
chat_model = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.1")
def get_wikipedia_summary(name):
page = wiki_wiki.page(name)
return page.summary if page.exists() else "Sorry, I couldn't find information on that historical figure."
def chat_with_ai(person_name, user_input):
context = get_wikipedia_summary(person_name)
prompt = f"You are {person_name}. Based on this historical information: {context}\n\nUser: {user_input}\n{person_name}:"
response = chat_model(prompt, max_length=200, truncation=True)
return response[0]["generated_text"].split("User:")[0].strip()
st.title("Educational Chatbot")
mode = st.sidebar.selectbox("Select Chat Mode", ["Chat with Historical Figures", "Study with a Tutor"])
if mode == "Chat with Historical Figures":
person_name = st.text_input("Enter the name of a historical figure:")
if person_name:
st.write(f"You are now chatting with **{person_name}**!")
elif mode == "Study with a Tutor":
topic = st.sidebar.selectbox("Choose a Study Topic", ["Mathematics", "History", "Physics"])
st.write(f"You are now studying **{topic}**!")
# Chat input
if "messages" not in st.session_state:
st.session_state.messages = []
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
user_input = st.chat_input("Type your message here...")
if user_input and mode == "Chat with Historical Figures" and person_name:
st.session_state.messages.append({"role": "user", "content": user_input})
st.chat_message("user").write(user_input)
response = chat_with_ai(person_name, user_input)
st.session_state.messages.append({"role": "assistant", "content": response})
st.chat_message("assistant").write(response)
# Instructions for Deployment
st.sidebar.subheader("Deployment Instructions")
st.sidebar.markdown("1. Ensure `transformers` and `wikipedia-api` libraries are installed.")
st.sidebar.markdown("2. Run `streamlit run chatbot.py` locally.")
st.sidebar.markdown("3. Deploy on [Hugging Face Spaces](https://huggingface.co/spaces) or Replit.")
|