Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import wikipediaapi | |
import os # For accessing environment variables | |
# Securely fetch Hugging Face API key from environment variables | |
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY") | |
if not HUGGINGFACE_API_KEY: | |
st.error("⚠️ API Key Missing! Please add your Hugging Face API key as a secret in your Space settings.") | |
st.stop() | |
# Set up Wikipedia API | |
USER_AGENT = "HistoricalChatbot/1.0 (Contact: [email protected])" | |
wiki_wiki = wikipediaapi.Wikipedia("en", headers={"User-Agent": USER_AGENT}) | |
def get_wikipedia_summary(name): | |
"""Fetch summary from Wikipedia""" | |
page = wiki_wiki.page(name) | |
return page.summary if page.exists() else "Sorry, I couldn't find information on that historical figure." | |
def chat_with_ai(person_name, user_input): | |
"""Query Hugging Face API for response""" | |
context = get_wikipedia_summary(person_name) | |
prompt = f"You are {person_name}. Based on this historical information: {context}\\n\\nUser: {user_input}\\n{person_name}:" | |
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.1" | |
headers = {"Authorization": f"Bearer {HUGGINGFACE_API_KEY}"} | |
response = requests.post(API_URL, headers=headers, json={"inputs": prompt}) | |
if response.status_code == 200: | |
return response.json()[0]["generated_text"] | |
else: | |
return "I'm sorry, but I couldn't generate a response at this time." | |
# Streamlit UI | |
st.title("Educational Chatbot") | |
mode = st.sidebar.selectbox("Select Chat Mode", ["Chat with Historical Figures", "Study with a Tutor"]) | |
if mode == "Chat with Historical Figures": | |
person_name = st.text_input("Enter the name of a historical figure:") | |
if person_name: | |
st.write(f"You are now chatting with **{person_name}**!") | |
elif mode == "Study with a Tutor": | |
topic = st.sidebar.selectbox("Choose a Study Topic", ["Mathematics", "History", "Physics"]) | |
st.write(f"You are now studying **{topic}**!") | |
# Chat input | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
for msg in st.session_state.messages: | |
st.chat_message(msg["role"]).write(msg["content"]) | |
user_input = st.chat_input("Type your message here...") | |
if user_input and mode == "Chat with Historical Figures" and person_name: | |
st.session_state.messages.append({"role": "user", "content": user_input}) | |
st.chat_message("user").write(user_input) | |
response = chat_with_ai(person_name, user_input) | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
st.chat_message("assistant").write(response) | |
# Deployment instructions | |
st.sidebar.subheader("Deployment Instructions") | |
st.sidebar.markdown("1. Add the API key as a secret in Hugging Face Spaces.") | |
st.sidebar.markdown("2. Run `streamlit run app.py` locally or deploy on Hugging Face Spaces.") |