Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load Phi-2 model and tokenizer
|
6 |
+
MODEL_NAME = "microsoft/phi-2"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
9 |
+
|
10 |
+
def get_response(user_input):
|
11 |
+
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
|
12 |
+
with torch.no_grad():
|
13 |
+
output = model.generate(input_ids, max_length=200)
|
14 |
+
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
15 |
+
return response
|
16 |
+
|
17 |
+
# Streamlit UI
|
18 |
+
st.title("Study Buddy Chatbot 📚")
|
19 |
+
st.write("Ask a question or type a topic, and I'll help you learn!")
|
20 |
+
|
21 |
+
user_input = st.text_input("Type your question or topic:")
|
22 |
+
if user_input:
|
23 |
+
response = get_response(user_input)
|
24 |
+
st.write("🤖 Chatbot:", response)
|