Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,3 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
import torch
|
4 |
-
|
5 |
-
# Load the Zephyr-7B-Alpha model (fully open and optimized for instruction-following)
|
6 |
-
MODEL_NAME = "HuggingFaceH4/zephyr-7b-alpha"
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(
|
9 |
-
MODEL_NAME,
|
10 |
-
torch_dtype=torch.float16,
|
11 |
-
device_map="cpu", # Forces CPU usage
|
12 |
-
low_cpu_mem_usage=True # Helps reduce memory spikes
|
13 |
-
)
|
14 |
-
|
15 |
-
# Initialize conversation history if not present
|
16 |
-
if "conversation" not in st.session_state:
|
17 |
-
st.session_state.conversation = []
|
18 |
-
|
19 |
def get_response(user_input):
|
20 |
"""Generate a thoughtful response that includes a follow-up question."""
|
21 |
history = "\n".join(st.session_state.conversation[-5:]) # Keep only the last 5 turns
|
@@ -26,24 +8,19 @@ def get_response(user_input):
|
|
26 |
f"Student: {user_input}\n"
|
27 |
f"Coach: "
|
28 |
)
|
29 |
-
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
30 |
-
with torch.no_grad():
|
31 |
-
output = model.generate(input_ids, max_length=300)
|
32 |
-
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
33 |
-
return response
|
34 |
-
|
35 |
-
# Streamlit UI
|
36 |
-
st.title("📚 Study Buddy Chatbot")
|
37 |
-
st.write("Ask a question or type a topic, and I'll help you learn interactively!")
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
st.session_state.conversation.append(f"Coach: {response}")
|
44 |
-
st.write("🤖 Coach:", response)
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def get_response(user_input):
|
2 |
"""Generate a thoughtful response that includes a follow-up question."""
|
3 |
history = "\n".join(st.session_state.conversation[-5:]) # Keep only the last 5 turns
|
|
|
8 |
f"Student: {user_input}\n"
|
9 |
f"Coach: "
|
10 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Tokenize input with padding and attention mask
|
13 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
14 |
+
input_ids = inputs.input_ids.to(model.device)
|
15 |
+
attention_mask = inputs.attention_mask.to(model.device)
|
|
|
|
|
16 |
|
17 |
+
with torch.no_grad():
|
18 |
+
output = model.generate(
|
19 |
+
input_ids,
|
20 |
+
attention_mask=attention_mask,
|
21 |
+
max_length=300,
|
22 |
+
pad_token_id=tokenizer.eos_token_id # Ensures correct token handling
|
23 |
+
)
|
24 |
+
|
25 |
+
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
26 |
+
return response
|