Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pymupdf # PyMuPDF for handling PDF files | |
from PIL import Image | |
import os | |
from functions import get_image_informations | |
from dataSchema import * | |
import shutil | |
def Noc_timeSheet_pdf_to_img(pdf_path,output_path,dpi: int = 300, quality: int = 95): | |
pdf_document = pymupdf.open(pdf_path) | |
# Get the first page of the PDF | |
page = pdf_document.load_page(0) # 0 is the first page | |
# Convert the page to a pixmap (image) | |
pix = page.get_pixmap(dpi=dpi) | |
# Convert the pixmap to a PIL Image and save as JPG | |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
width, height = image.size | |
start_y_total_table = int(height* 0.42) | |
end_y_first_table = int(height*0.30) | |
croped1 = image.crop((0, 0, width//2, end_y_first_table)) | |
croped2 = image.crop((0, start_y_total_table, width//2, height)) | |
upper_width, upper_height = croped1.size | |
lower_width, lower_height = croped2.size | |
combined_image = Image.new('RGB', (upper_width, upper_height + lower_height)) | |
# Paste the upper image (croped1) on top | |
combined_image.paste(croped1, (0, 0)) | |
# Paste the lower image (croped2) below the upper image | |
combined_image.paste(croped2, (0, upper_height)) | |
# Save the combined image | |
combined_image.save(output_path, "JPEG",quality=quality) | |
#-----------S3------------ need S3_BUCKET,S3_REGION,S3_URL | |
# import boto3 | |
# s3_client = boto3.client('s3', region_name=S3_REGION) | |
# s3_client.upload_file(output_path, S3_BUCKET, key) | |
# file_url = f"{S3_URL}/{key}" | |
# return file_url | |
# return output_path | |
def Clauses_in_invoice(pdf_path: str) -> bool: | |
""" | |
Extract text from the last page of a PDF. | |
""" | |
pdf_document = pymupdf.open(pdf_path) | |
total_pages = pdf_document.page_count | |
last_page = pdf_document.load_page(total_pages - 1) | |
text = last_page.get_text() | |
pdf_document.close() | |
if "clauses" in text.lower(): | |
return True | |
else: | |
return False | |
def Noc_invoice_pdf_to_img(pdf_path: str, folder_path: str, dpi: int = 300, quality: int = 95): | |
pdf_document = pymupdf.open(pdf_path) | |
folder_path = folder_path.rstrip(os.sep) | |
os.makedirs(folder_path, exist_ok=True) | |
pdf_name = os.path.splitext(os.path.basename(pdf_path))[0] | |
total_pages = pdf_document.page_count | |
image_paths=[] | |
for page_num in range(total_pages): | |
page = pdf_document.load_page(page_num) | |
pix = page.get_pixmap(dpi=dpi) | |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
output_path = os.path.join(folder_path, f"{pdf_name}_page_{page_num + 1}.jpg") | |
image.save(output_path, "JPEG", quality=quality) | |
#-----------S3------------ need S3_BUCKET,S3_REGION,S3_URL | |
# import boto3 | |
# s3_client = boto3.client('s3', region_name=S3_REGION) | |
# s3_client.upload_file(output_path, S3_BUCKET, key) | |
# file_url = f"{S3_URL}/{key}" | |
# append the s3 links | |
# image_paths.append(file_url) | |
image_paths.append(output_path) | |
pdf_document.close() | |
return image_paths | |
def delete_images(image_paths): | |
# Iterate through the list of image paths | |
for image_path in image_paths: | |
try: | |
# Check if the file exists before attempting to delete | |
if os.path.exists(image_path): | |
os.remove(image_path) | |
print(f"Deleted: {image_path}") | |
else: | |
print(f"File not found: {image_path}") | |
except Exception as e: | |
print(f"Error deleting {image_path}: {e}") | |
def noc_invoice_extraction(pdf_path: str,folder_path): | |
image_paths=Noc_invoice_pdf_to_img(pdf_path,folder_path) | |
data = {} | |
result = get_image_informations(image_paths[0],invoice_first_page_prompt,Noc_PurchaseOrder_information_parser) | |
data.update(result) | |
result = get_image_informations(image_paths[1],invoice_item_page1_prompt,Noc_PurchaseOrder_item1_parser) | |
data.update(result) | |
if Clauses_in_invoice(pdf_path): | |
for pic in range(len(image_paths)-4): | |
new_item = get_image_informations(image_paths[pic+2],invoice_item_pages_prompt,Noc_PurchaseOrder_items_parser) | |
for item in new_item["items"]: | |
data["items"].append(item) | |
result = get_image_informations(image_paths[-2],invoice_total_page_prompt,Noc_PurchaseOrder_total_parser) | |
data.update(result) | |
result = get_image_informations(image_paths[-1],invoice_clauses_page_prompt,Noc_PurchaseOrder_clauses_parser) | |
data.update(result) | |
delete_images(image_paths) | |
return data | |
else: | |
for pic in range(len(image_paths)-3): | |
new_item = get_image_informations(image_paths[pic+2],invoice_item_pages_prompt,Noc_PurchaseOrder_items_parser) | |
for item in new_item["items"]: | |
data["items"].append(item) | |
result = get_image_informations(image_paths[-2],invoice_total_page_prompt,Noc_PurchaseOrder_total_parser) | |
data.update(result) | |
delete_images(image_paths) | |
return data | |
def process_pdf(file, option): | |
if file is None: | |
return "Please upload a PDF file." | |
try: | |
save_dir = "uploaded_files" | |
os.makedirs(save_dir, exist_ok=True) # Create the directory if it doesn't exist | |
# Save the uploaded file to the new location | |
file_path = file.name | |
# Process based on the selected option | |
if option == "Noc_timesheet_resdiential": | |
Noc_timeSheet_pdf_to_img(file_path,"output.jpg") | |
result = get_image_informations("output.jpg",Noc_Res_timesheet_prompt,Noc_Res_timeSheet_parser) | |
return result | |
elif option == "Noc_timesheet_rotational": | |
Noc_timeSheet_pdf_to_img(file_path,"output.jpg") | |
result = get_image_informations("output.jpg",Noc_Rot_timesheet_prompt,Noc_Rot_timeSheet_parser) | |
return result | |
elif option=="Noc_invoice": | |
result = noc_invoice_extraction(file_path,save_dir) | |
return result | |
# else: | |
# return "Invalid option selected." | |
except Exception as e: | |
return f"An error occurred: {e}" | |
# Define the Gradio interface | |
demo = gr.Interface( | |
fn=process_pdf, | |
inputs=[ | |
gr.File(label="Upload PDF"), # File upload input | |
gr.Radio(["Noc_timesheet_residential","Noc_timesheet_rotational", "Noc_invoice"], label="Choose an option") # Radio buttons for options | |
], | |
outputs="text", # Text output | |
title="PDF Processor", | |
description="Upload a PDF and choose an option to process the text." | |
) | |
demo.launch() | |