Spaces:
Paused
Paused
Amamrnaf
commited on
Commit
·
1a73edf
1
Parent(s):
a62a5cc
yep
Browse files- metaVoice.py +785 -9
metaVoice.py
CHANGED
@@ -1,6 +1,43 @@
|
|
1 |
from fam.llm.fast_inference import TTS
|
2 |
import string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import soundfile as sf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def remove_punctuation(sentence):
|
6 |
translator = str.maketrans('', '', string.punctuation)
|
@@ -11,8 +48,26 @@ def remove_punctuation(sentence):
|
|
11 |
|
12 |
return sentence
|
13 |
|
14 |
-
def run_audio_generation_v2(new_text,accent='None'):
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
new_text = new_text.replace('\n', ' ').replace('\r', '')
|
17 |
new_text_mod = remove_punctuation(new_text)
|
18 |
|
@@ -20,11 +75,732 @@ def run_audio_generation_v2(new_text,accent='None'):
|
|
20 |
for word in new_text_split:
|
21 |
if len(word)>=2 and word.isupper():
|
22 |
new_text = new_text.replace(word, " ".join([*word]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fam.llm.fast_inference import TTS
|
2 |
import string
|
3 |
+
import json
|
4 |
+
from glob import glob
|
5 |
+
import torch
|
6 |
+
import os
|
7 |
+
import torchaudio
|
8 |
+
import subprocess
|
9 |
+
import shutil
|
10 |
import soundfile as sf
|
11 |
+
import pyloudnorm as pyln
|
12 |
+
import noisereduce as nr
|
13 |
+
from moviepy.editor import *
|
14 |
+
from pydub import AudioSegment
|
15 |
+
from fam.llm.adapters import FlattenedInterleavedEncodec2Codebook, TiltedEncodec
|
16 |
+
from fam.llm.decoders import Decoder, EncodecDecoder
|
17 |
+
from fam.llm.enhancers import BaseEnhancer, get_enhancer
|
18 |
+
from fam.llm.model import GPT, GPTConfig
|
19 |
+
from fam.llm.utils import (
|
20 |
+
check_audio_file,
|
21 |
+
get_default_dtype,
|
22 |
+
get_default_use_kv_cache,
|
23 |
+
normalize_text,
|
24 |
+
)
|
25 |
+
from fam.quantiser.audio.speaker_encoder.model import SpeakerEncoder
|
26 |
+
from fam.quantiser.text.tokenise import TrainedBPETokeniser
|
27 |
+
import tyro
|
28 |
+
from huggingface_hub import snapshot_download
|
29 |
+
from typing import List, Literal, Optional, Tuple, Type, Union
|
30 |
+
import dataclasses
|
31 |
+
import hashlib
|
32 |
+
import json
|
33 |
+
import os
|
34 |
+
import pathlib
|
35 |
+
from contextlib import nullcontext
|
36 |
+
from dataclasses import dataclass
|
37 |
+
import tqdm
|
38 |
+
import tqdm.contrib.concurrent
|
39 |
+
import tempfile
|
40 |
+
import textwrap
|
41 |
|
42 |
def remove_punctuation(sentence):
|
43 |
translator = str.maketrans('', '', string.punctuation)
|
|
|
48 |
|
49 |
return sentence
|
50 |
|
51 |
+
# def run_audio_generation_v2(new_text,accent='None'):
|
52 |
+
# tts = TTS()
|
53 |
+
# new_text = new_text.replace('\n', ' ').replace('\r', '')
|
54 |
+
# new_text_mod = remove_punctuation(new_text)
|
55 |
+
|
56 |
+
# new_text_split = new_text_mod.split()
|
57 |
+
# for word in new_text_split:
|
58 |
+
# if len(word)>=2 and word.isupper():
|
59 |
+
# new_text = new_text.replace(word, " ".join([*word]))
|
60 |
+
|
61 |
+
# wav_file = tts.synthesise(
|
62 |
+
# text=new_text,
|
63 |
+
# spk_ref_path="./tmp/audio/speaker_wav.wav" # you can use any speaker reference file (WAV, OGG, MP3, FLAC, etc.)
|
64 |
+
# )
|
65 |
+
# sf.write('audio/output.wav', wav_file, samplerate=22050)
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
def run_audio_generation_v2(new_text, accent=None):
|
70 |
+
# check for abbreviations in new text. need to add - after each letter so that audio comes out okay
|
71 |
new_text = new_text.replace('\n', ' ').replace('\r', '')
|
72 |
new_text_mod = remove_punctuation(new_text)
|
73 |
|
|
|
75 |
for word in new_text_split:
|
76 |
if len(word)>=2 and word.isupper():
|
77 |
new_text = new_text.replace(word, " ".join([*word]))
|
78 |
+
print(new_text)
|
79 |
+
|
80 |
+
|
81 |
+
if len(new_text)<=220:
|
82 |
+
sampling_config = SamplingControllerConfig(spk_cond_path="./tmp/audio/input_src/0.wav", text=new_text, output_dir='./tmp/audio/', output_name='generated-custom.wav')
|
83 |
+
metavoice_gen(sampling_config)
|
84 |
+
else:
|
85 |
+
new_texts = new_text.split('. ') #textwrap.wrap(new_text, 220)
|
86 |
+
new_texts = [txt +"." for txt in new_texts]
|
87 |
+
output_names = []
|
88 |
+
for idx, new_text in enumerate(new_texts):
|
89 |
+
output_name = "-{}.".format(idx).join('generated-custom.wav'.split('.'))
|
90 |
+
output_names.append(output_name)
|
91 |
+
sampling_config = SamplingControllerConfig(spk_cond_path="./tmp/audio/input_src/0.wav", text=new_text, output_dir='./tmp/audio/multiple/', output_name=output_name)
|
92 |
+
metavoice_gen(sampling_config)
|
93 |
+
|
94 |
+
#audio_files = ['./tmp/audio/multiple/'+'/'+ aud for aud in os.listdir('./tmp/audio/multiple/') if aud.endswith(".wav")]
|
95 |
+
audio_files = ['./tmp/audio/multiple/'+'/'+ aud for aud in output_names]
|
96 |
+
print(audio_files)
|
97 |
+
clips = [(AudioFileClip(clip)) for clip in audio_files]
|
98 |
+
final_clip = concatenate_audioclips(clips)
|
99 |
+
final_clip.write_audiofile('./tmp/audio/generated-custom.wav')
|
100 |
+
|
101 |
+
# adjust loudness
|
102 |
+
data, rate = sf.read("./tmp/audio/input_audio.wav") # load audio (with shape (samples, channels))
|
103 |
+
meter = pyln.Meter(rate) # create BS.1770 meter
|
104 |
+
loudness_target = meter.integrated_loudness(data) # measure loudness
|
105 |
+
|
106 |
+
mod_data, mod_rate = sf.read("./tmp/audio/generated-custom.wav") # load audio (with shape (samples, channels))
|
107 |
+
mod_meter = pyln.Meter(mod_rate) # create BS.1770 meter
|
108 |
+
loudness_gen = mod_meter.integrated_loudness(mod_data) # measure loudness
|
109 |
+
|
110 |
+
loudness_normalized_gen = pyln.normalize.loudness(mod_data, loudness_gen, loudness_target)
|
111 |
+
sf.write('./tmp/audio/generated-custom.wav', loudness_normalized_gen, mod_rate)
|
112 |
+
|
113 |
+
@dataclass
|
114 |
+
class InferenceConfig:
|
115 |
+
ckpt_path: str # path to checkpoint
|
116 |
+
output_dir: str
|
117 |
+
num_samples: int = 10 # number of samples to draw
|
118 |
+
seed: int = 1337 # random seed
|
119 |
+
device: str = "cuda"
|
120 |
+
dtype: str = "bfloat16"
|
121 |
+
compile: bool = False
|
122 |
+
init_from: str = "resume" # either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl')
|
123 |
+
|
124 |
+
def __str__(self):
|
125 |
+
field_strs = []
|
126 |
+
for field in dataclasses.fields(self):
|
127 |
+
value = getattr(self, field.name)
|
128 |
+
field_strs.append(f" {field.name}: {value}")
|
129 |
+
|
130 |
+
return "InferenceConfig:\n" + "\n".join(field_strs)
|
131 |
+
|
132 |
+
|
133 |
+
class Model:
|
134 |
+
def __init__(
|
135 |
+
self,
|
136 |
+
config: InferenceConfig,
|
137 |
+
tokenizer_cls: Type[TrainedBPETokeniser],
|
138 |
+
decoder_cls: Type[Decoder],
|
139 |
+
data_adapter_fn,
|
140 |
+
use_kv_cache: Optional[Literal["flash_decoding", "vanilla"]] = None,
|
141 |
+
):
|
142 |
+
# TODO: disentangle the encodec stuff and numbers etc with rest of this code (esp at encoder-only / second stage model inference)
|
143 |
+
# TODO: remove magic number
|
144 |
+
self._encodec_codes_pad_token = 1024
|
145 |
+
self._num_encodec_codebooks = 8
|
146 |
+
self.config = config
|
147 |
+
self.use_kv_cache = use_kv_cache
|
148 |
+
|
149 |
+
torch.manual_seed(config.seed)
|
150 |
+
torch.cuda.manual_seed(config.seed)
|
151 |
+
torch.backends.cuda.matmul.allow_tf32 = True if config.dtype != "float32" else False # allow tf32 on matmul
|
152 |
+
torch.backends.cudnn.allow_tf32 = True if config.dtype != "float32" else False # allow tf32 on cudnn
|
153 |
+
device_type = "cuda" if "cuda" in config.device else "cpu" # for later use in torch.autocast
|
154 |
+
self.ptdtype = {
|
155 |
+
"float32": torch.float32,
|
156 |
+
"tfloat32": torch.float32,
|
157 |
+
"bfloat16": torch.bfloat16,
|
158 |
+
"float16": torch.float16,
|
159 |
+
}[config.dtype]
|
160 |
+
self._ctx = (
|
161 |
+
nullcontext() if device_type == "cpu" else torch.amp.autocast(device_type=device_type, dtype=self.ptdtype)
|
162 |
+
)
|
163 |
+
|
164 |
+
self.use_bpe_tokenizer = False
|
165 |
+
self.load_meta = None
|
166 |
+
self.speaker_cond = None
|
167 |
+
self.meta = None
|
168 |
+
self.model = None
|
169 |
+
self.checkpoint_config = None
|
170 |
+
self.vocab_sizes = None
|
171 |
+
self.smodel = None
|
172 |
+
|
173 |
+
self._init_model()
|
174 |
+
|
175 |
+
self.tokenizer = tokenizer_cls(**self.meta["tokenizer"])
|
176 |
+
self.decoder = decoder_cls(
|
177 |
+
tokeniser_decode_fn=self.tokenizer.decode,
|
178 |
+
output_dir=self.config.output_dir,
|
179 |
+
data_adapter_fn=data_adapter_fn,
|
180 |
+
)
|
181 |
+
|
182 |
+
def _init_model(self):
|
183 |
+
if self.config.init_from == "resume":
|
184 |
+
# init from a model saved in a specific directory
|
185 |
+
checkpoint = torch.load(self.config.ckpt_path, map_location=self.config.device)
|
186 |
+
self.vocab_sizes = checkpoint["model_args"]["vocab_sizes"]
|
187 |
+
|
188 |
+
self.load_meta = False
|
189 |
+
self.speaker_cond = False
|
190 |
+
|
191 |
+
if "config" in checkpoint:
|
192 |
+
self.checkpoint_config = checkpoint["config"]
|
193 |
+
|
194 |
+
self.meta = checkpoint["meta"]
|
195 |
+
load_meta = True
|
196 |
+
|
197 |
+
if load_meta:
|
198 |
+
self.use_bpe_tokenizer = "stoi" not in self.meta or "itos" not in self.meta
|
199 |
+
self.speaker_cond = self.meta.get("speaker_cond")
|
200 |
+
|
201 |
+
if self.speaker_cond:
|
202 |
+
speaker_emb_size = self.meta["speaker_emb_size"]
|
203 |
+
|
204 |
+
model_args = checkpoint["model_args"]
|
205 |
+
if "causal" in self.checkpoint_config and self.checkpoint_config["causal"] is False:
|
206 |
+
self._encodec_ctx_window = model_args["block_size"]
|
207 |
+
|
208 |
+
gptconf = GPTConfig(**model_args)
|
209 |
+
|
210 |
+
# TODO: rename `speaker_emb_dim` to `speaker_emb_size`.
|
211 |
+
self.model = GPT(gptconf, speaker_emb_dim=speaker_emb_size if self.speaker_cond else None)
|
212 |
+
state_dict = checkpoint["model"]
|
213 |
+
unwanted_prefix = "_orig_mod."
|
214 |
+
for k, v in list(state_dict.items()):
|
215 |
+
if k.startswith(unwanted_prefix):
|
216 |
+
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
|
217 |
+
self.model.load_state_dict(state_dict)
|
218 |
+
|
219 |
+
# model
|
220 |
+
self.model.eval()
|
221 |
+
self.model.to(self.config.device)
|
222 |
+
|
223 |
+
if self.config.compile:
|
224 |
+
from einops._torch_specific import allow_ops_in_compiled_graph
|
225 |
+
|
226 |
+
allow_ops_in_compiled_graph()
|
227 |
+
self.model = torch.compile(self.model) # type: ignore
|
228 |
+
|
229 |
+
if self.use_kv_cache is not None:
|
230 |
+
if "causal" in self.checkpoint_config and self.checkpoint_config["causal"] is False:
|
231 |
+
raise Exception("kv_cache not supported for non-causal models!")
|
232 |
+
|
233 |
+
if self.use_kv_cache == "flash_decoding":
|
234 |
+
self.model.enable_kv_cache()
|
235 |
+
for block in self.model.transformer.h:
|
236 |
+
block.attn.attn_kernel_type = "fd"
|
237 |
+
elif self.use_kv_cache == "vanilla":
|
238 |
+
self.model.enable_kv_cache()
|
239 |
+
else:
|
240 |
+
raise NotImplementedError(f"kv_cache type {self.use_kv_cache} not implemented!")
|
241 |
+
|
242 |
+
def causal_sample(
|
243 |
+
self,
|
244 |
+
*,
|
245 |
+
texts: list[str],
|
246 |
+
batch_size: int,
|
247 |
+
max_new_tokens: int,
|
248 |
+
temperature: Optional[float],
|
249 |
+
top_k: Optional[int],
|
250 |
+
top_p: Optional[float],
|
251 |
+
speaker_embs: Optional[torch.Tensor] = None,
|
252 |
+
guidance_scale: Optional[float] = None,
|
253 |
+
) -> list[torch.Tensor]:
|
254 |
+
"""
|
255 |
+
Returns list of torch.Tensors of tokens. Each tensor is of shape (1, c, t) where c is the number of codebooks.
|
256 |
+
Any flattening / inteleaving / tilting gets reversed before the output is returned.
|
257 |
+
"""
|
258 |
+
if speaker_embs is not None:
|
259 |
+
assert len(texts) == len(speaker_embs)
|
260 |
+
|
261 |
+
encoded_texts = [self.tokenizer.encode(text) for text in texts]
|
262 |
+
|
263 |
+
## create multiple hierarchies and get seq_lens
|
264 |
+
seq_lens = []
|
265 |
+
xs = []
|
266 |
+
for i, encoded_text in enumerate(encoded_texts):
|
267 |
+
encoded_text = torch.tensor([encoded_text], dtype=torch.long, device=self.config.device)
|
268 |
+
# TODO: remove magic number
|
269 |
+
xs.append(
|
270 |
+
torch.cat(
|
271 |
+
# [1st hierarchy of text, *remaining hierarchies of padded tokens]
|
272 |
+
# TODO: self.vocab_sizes should be from the model config?
|
273 |
+
[encoded_text, *[torch.ones_like(encoded_text) * 1024] * (len(self.vocab_sizes) - 1)],
|
274 |
+
dim=0,
|
275 |
+
).unsqueeze(0)
|
276 |
+
) # b x [(b=1, c, t)]
|
277 |
+
seq_lens.append(xs[-1].shape[-1])
|
278 |
+
max_len = max(seq_lens)
|
279 |
+
assert len(xs) == len(seq_lens)
|
280 |
+
|
281 |
+
## equalise the shapes in the batch. we can use torch.zeros as tokens > seq_lens will be masked out.
|
282 |
+
x = torch.zeros((len(encoded_texts), xs[0].shape[1], max_len), dtype=torch.long, device=self.config.device)
|
283 |
+
for i, _xs in enumerate(xs):
|
284 |
+
assert _xs.shape[-1] == seq_lens[i]
|
285 |
+
x[i, :, : seq_lens[i]] = _xs
|
286 |
+
|
287 |
+
## check that the input is correct
|
288 |
+
for i in range(x.shape[0]):
|
289 |
+
assert x[i, 0, : seq_lens[i]].tolist() == encoded_texts[i]
|
290 |
+
|
291 |
+
# TODO: remove magic number
|
292 |
+
if x.shape[1] > 1:
|
293 |
+
assert set(x[i, 1, : seq_lens[i]].tolist()) == set([1024])
|
294 |
+
|
295 |
+
assert x.shape[0] == speaker_embs.shape[0] if speaker_embs is not None else True
|
296 |
+
|
297 |
+
if self.speaker_cond is False:
|
298 |
+
speaker_embs = None
|
299 |
+
|
300 |
+
# run sampling loop
|
301 |
+
with torch.no_grad():
|
302 |
+
with self._ctx: # type: ignore
|
303 |
+
to_return = []
|
304 |
+
for k in range(self.config.num_samples):
|
305 |
+
assert seq_lens is not None
|
306 |
+
assert batch_size is not None
|
307 |
+
|
308 |
+
if max(seq_lens) + max_new_tokens >= self.model.config.block_size:
|
309 |
+
raise Exception(
|
310 |
+
f"max_new_tokens {max_new_tokens} too large! Choose {self.model.config.block_size - max(seq_lens) - 1} instead."
|
311 |
+
)
|
312 |
+
|
313 |
+
y = self.model.generate(
|
314 |
+
x,
|
315 |
+
max_new_tokens,
|
316 |
+
seq_lens=seq_lens,
|
317 |
+
temperature=temperature,
|
318 |
+
top_k=top_k,
|
319 |
+
top_p=top_p,
|
320 |
+
speaker_embs=speaker_embs,
|
321 |
+
batch_size=batch_size,
|
322 |
+
guidance_scale=guidance_scale,
|
323 |
+
dtype=self.ptdtype,
|
324 |
+
end_of_audio_token=self.tokenizer.offset - 1,
|
325 |
+
end_of_text_token=self.tokenizer.eot_token,
|
326 |
+
)
|
327 |
+
for i in range(len(y)):
|
328 |
+
to_return.append(self.decoder.decode(tokens=y[i].tolist(), causal=True))
|
329 |
+
|
330 |
+
return to_return
|
331 |
+
|
332 |
+
def non_causal_sample(
|
333 |
+
self,
|
334 |
+
*,
|
335 |
+
texts: list[str],
|
336 |
+
encodec_tokens: list[torch.Tensor],
|
337 |
+
batch_size: int,
|
338 |
+
top_k: Optional[int],
|
339 |
+
temperature: Optional[float],
|
340 |
+
speaker_embs: Optional[torch.Tensor] = None,
|
341 |
+
) -> list[str]:
|
342 |
+
"""
|
343 |
+
Returns paths to saved audio files.
|
344 |
+
"""
|
345 |
+
if speaker_embs is not None:
|
346 |
+
assert len(texts) == len(speaker_embs)
|
347 |
+
|
348 |
+
encoded_texts = [self.tokenizer.encode(text) for text in texts]
|
349 |
+
|
350 |
+
# setup input
|
351 |
+
# TODO: same code is used during data prep. refactor
|
352 |
+
padded_hierarchies_inputs = []
|
353 |
+
for encoded_text, encodec_token in zip(encoded_texts, encodec_tokens):
|
354 |
+
x = torch.tensor(encoded_text, dtype=torch.long, device=self.config.device)[
|
355 |
+
None, None, ...
|
356 |
+
] # (b=1, c=1, t)
|
357 |
+
|
358 |
+
# TODO: should only happen if decoder is encodecdeocder?
|
359 |
+
assert encodec_token.shape[0] == 1
|
360 |
+
encodec_token = encodec_token[0].tolist() # (b=1, c, t) -> (c, t)
|
361 |
+
assert len(encodec_token) >= 1 and len(encodec_token) <= self._num_encodec_codebooks
|
362 |
+
|
363 |
+
## setup hierarchies of tokens
|
364 |
+
# TODO: refactor and merge with code in processing.py
|
365 |
+
text_tokens = encoded_text # (t,)
|
366 |
+
|
367 |
+
hierarchies_in = []
|
368 |
+
hierarchies_in.append(text_tokens + encodec_token[0] + [self._encodec_codes_pad_token])
|
369 |
+
hierarchies_in.append(
|
370 |
+
[self._encodec_codes_pad_token] * len(text_tokens) + encodec_token[1] + [self._encodec_codes_pad_token]
|
371 |
+
)
|
372 |
+
|
373 |
+
## adding padding / cutting to the right size as needed
|
374 |
+
# TODO: refactor and merge with code in processing.py
|
375 |
+
padded_hierarchies_input = []
|
376 |
+
for _, t_hierarchy in enumerate(hierarchies_in):
|
377 |
+
assert len(t_hierarchy) == len(hierarchies_in[0])
|
378 |
+
if len(t_hierarchy) < self._encodec_ctx_window:
|
379 |
+
padded_hierarchies_input.append(
|
380 |
+
t_hierarchy + [self._encodec_codes_pad_token] * (self._encodec_ctx_window - len(t_hierarchy))
|
381 |
+
)
|
382 |
+
elif len(t_hierarchy) > self._encodec_ctx_window:
|
383 |
+
padded_hierarchies_input.append(t_hierarchy[: self._encodec_ctx_window])
|
384 |
+
else:
|
385 |
+
padded_hierarchies_input.append(t_hierarchy)
|
386 |
+
|
387 |
+
padded_hierarchies_inputs.append(padded_hierarchies_input)
|
388 |
+
|
389 |
+
## check that the input is correct
|
390 |
+
in_x = torch.tensor(padded_hierarchies_inputs, dtype=torch.long, device=self.config.device)
|
391 |
+
assert in_x.shape[0] == speaker_embs.shape[0] if speaker_embs is not None else True
|
392 |
+
|
393 |
+
if self.speaker_cond is False:
|
394 |
+
speaker_embs = None
|
395 |
+
|
396 |
+
# run sampling loop
|
397 |
+
with torch.no_grad():
|
398 |
+
with self._ctx: # type: ignore
|
399 |
+
to_return = []
|
400 |
+
for k in range(self.config.num_samples):
|
401 |
+
y = self.model.generate(
|
402 |
+
in_x,
|
403 |
+
None,
|
404 |
+
temperature=temperature,
|
405 |
+
top_k=top_k,
|
406 |
+
# TODO: handle separate top_p for this model explicitly
|
407 |
+
top_p=None,
|
408 |
+
speaker_embs=speaker_embs,
|
409 |
+
batch_size=batch_size,
|
410 |
+
guidance_scale=None,
|
411 |
+
)
|
412 |
+
|
413 |
+
b_tokens = torch.cat([in_x, y], dim=1)
|
414 |
+
for tokens in b_tokens:
|
415 |
+
try:
|
416 |
+
to_return.append(self.decoder.decode(tokens=tokens.tolist(), causal=False))
|
417 |
+
except Exception as e:
|
418 |
+
print("failed to run MBD.")
|
419 |
+
print(f"reason: {str(e)}")
|
420 |
+
to_return.append(None)
|
421 |
+
|
422 |
+
return to_return
|
423 |
+
|
424 |
+
def __call__(
|
425 |
+
self,
|
426 |
+
*,
|
427 |
+
texts: list[str],
|
428 |
+
batch_size: int,
|
429 |
+
max_new_tokens: Optional[int],
|
430 |
+
top_k: Optional[int],
|
431 |
+
top_p: Optional[float],
|
432 |
+
temperature: Optional[float],
|
433 |
+
encodec_tokens: Optional[list[torch.Tensor]] = None,
|
434 |
+
speaker_embs: Optional[torch.Tensor] = None,
|
435 |
+
guidance_scale: Optional[float] = None,
|
436 |
+
):
|
437 |
+
if self.checkpoint_config.get("causal", True):
|
438 |
+
return self.causal_sample(
|
439 |
+
texts=texts,
|
440 |
+
batch_size=batch_size,
|
441 |
+
speaker_embs=speaker_embs,
|
442 |
+
guidance_scale=guidance_scale,
|
443 |
+
max_new_tokens=max_new_tokens,
|
444 |
+
top_k=top_k,
|
445 |
+
top_p=top_p,
|
446 |
+
temperature=temperature,
|
447 |
+
)
|
448 |
+
else:
|
449 |
+
assert encodec_tokens is not None
|
450 |
+
assert guidance_scale is None
|
451 |
+
assert max_new_tokens is None
|
452 |
+
assert top_p is None
|
453 |
+
|
454 |
+
return self.non_causal_sample(
|
455 |
+
texts=texts,
|
456 |
+
encodec_tokens=encodec_tokens,
|
457 |
+
batch_size=batch_size,
|
458 |
+
speaker_embs=speaker_embs,
|
459 |
+
top_k=top_k,
|
460 |
+
temperature=temperature,
|
461 |
+
)
|
462 |
+
|
463 |
+
|
464 |
+
def save_result_metadata(wav_path, ref_path, text, first_stage_ckpt_path, second_stage_ckpt_path):
|
465 |
+
if first_stage_ckpt_path is None or second_stage_ckpt_path is None:
|
466 |
+
return
|
467 |
+
json.dump(
|
468 |
+
{
|
469 |
+
"speaker": ref_path,
|
470 |
+
"text": text,
|
471 |
+
},
|
472 |
+
pathlib.Path(str(wav_path) + ".json").open("w"),
|
473 |
+
)
|
474 |
+
|
475 |
+
|
476 |
+
def get_cached_file(file_or_uri: str):
|
477 |
+
"""
|
478 |
+
If it's an s3 file, download it to a local temporary file and return that path.
|
479 |
+
Otherwise return the path as is.
|
480 |
+
"""
|
481 |
+
is_uri = file_or_uri.startswith("http")
|
482 |
+
|
483 |
+
cache_path = None
|
484 |
+
if is_uri:
|
485 |
+
ext = pathlib.Path(file_or_uri).suffix
|
486 |
+
# hash the file path to get the cache name
|
487 |
+
_cache_name = "audio_" + hashlib.md5(file_or_uri.encode("utf-8")).hexdigest() + ext
|
488 |
+
|
489 |
+
os.makedirs(os.path.expanduser("~/.cache/fam/"), exist_ok=True)
|
490 |
+
cache_path = os.path.expanduser(f"~/.cache/fam/{_cache_name}")
|
491 |
+
|
492 |
+
if not os.path.exists(cache_path):
|
493 |
+
command = f"curl -o {cache_path} {file_or_uri}"
|
494 |
+
subprocess.run(command, shell=True, check=True)
|
495 |
+
else:
|
496 |
+
if os.path.exists(file_or_uri):
|
497 |
+
cache_path = file_or_uri
|
498 |
+
else:
|
499 |
+
raise FileNotFoundError(f"File {file_or_uri} not found!")
|
500 |
+
return cache_path
|
501 |
+
|
502 |
+
|
503 |
+
def get_cached_embedding(local_file_path: str, spkemb_model):
|
504 |
+
if not os.path.exists(local_file_path):
|
505 |
+
raise FileNotFoundError(f"File {local_file_path} not found!")
|
506 |
+
|
507 |
+
# hash the file path to get the cache name
|
508 |
+
_cache_name = "embedding_" + hashlib.md5(local_file_path.encode("utf-8")).hexdigest() + ".pt"
|
509 |
+
|
510 |
+
os.makedirs(os.path.expanduser("~/.cache/fam/"), exist_ok=True)
|
511 |
+
cache_path = os.path.expanduser(f"~/.cache/fam/{_cache_name}")
|
512 |
+
|
513 |
+
if not os.path.exists(cache_path):
|
514 |
+
spk_emb = spkemb_model.embed_utterance_from_file(local_file_path, numpy=False).unsqueeze(0) # (b=1, c)
|
515 |
+
torch.save(spk_emb, cache_path)
|
516 |
+
else:
|
517 |
+
spk_emb = torch.load(cache_path)
|
518 |
+
|
519 |
+
return spk_emb
|
520 |
+
|
521 |
+
|
522 |
+
def _sample_utterance_batch(
|
523 |
+
texts: list[str],
|
524 |
+
spk_cond_paths: list[Optional[str]],
|
525 |
+
spkemb_model,
|
526 |
+
first_stage_model,
|
527 |
+
second_stage_model,
|
528 |
+
enhancer: Optional[Union[Literal["df"], BaseEnhancer]],
|
529 |
+
first_stage_ckpt_path: str,
|
530 |
+
second_stage_ckpt_path: str,
|
531 |
+
guidance_scale: Optional[Tuple[float, float]],
|
532 |
+
max_new_tokens: int,
|
533 |
+
top_k: Optional[int],
|
534 |
+
top_p: Optional[float],
|
535 |
+
temperature: Optional[float],
|
536 |
+
output_name: str,
|
537 |
+
output_dir: str,
|
538 |
+
batch_size: int = 128,
|
539 |
+
) -> List[str]:
|
540 |
+
|
541 |
+
speaker_embs = []
|
542 |
+
refs = spk_cond_paths.copy()
|
543 |
+
|
544 |
+
# multithreaded loop to cache all the files
|
545 |
+
spk_cond_paths = tqdm.contrib.concurrent.thread_map(
|
546 |
+
get_cached_file, spk_cond_paths, desc="getting cached speaker ref files"
|
547 |
+
)
|
548 |
+
|
549 |
+
for i, (text, spk_cond_path) in tqdm.tqdm(
|
550 |
+
enumerate(zip(texts, spk_cond_paths)), total=len(texts), desc="calculating speaker embeddings"
|
551 |
+
):
|
552 |
+
texts[i] = normalize_text(text)
|
553 |
+
speaker_embs.append(get_cached_embedding(spk_cond_path, spkemb_model) if spk_cond_path else None)
|
554 |
+
|
555 |
+
b_speaker_embs = torch.cat(speaker_embs, dim=0)
|
556 |
+
b_tokens = first_stage_model(
|
557 |
+
texts=texts,
|
558 |
+
speaker_embs=b_speaker_embs,
|
559 |
+
batch_size=batch_size,
|
560 |
+
guidance_scale=guidance_scale,
|
561 |
+
top_p=top_p,
|
562 |
+
top_k=top_k,
|
563 |
+
temperature=temperature,
|
564 |
+
max_new_tokens=max_new_tokens,
|
565 |
+
)
|
566 |
+
|
567 |
+
# TODO: set batch size for second stage model!
|
568 |
+
wav_files = second_stage_model(
|
569 |
+
texts=texts,
|
570 |
+
encodec_tokens=b_tokens,
|
571 |
+
speaker_embs=b_speaker_embs,
|
572 |
+
batch_size=batch_size,
|
573 |
+
guidance_scale=None,
|
574 |
+
top_p=None,
|
575 |
+
top_k=top_k,
|
576 |
+
temperature=temperature,
|
577 |
+
max_new_tokens=None,
|
578 |
+
)
|
579 |
+
|
580 |
+
for text, tokens, speaker_embs, ref_name, wav_file in zip(texts, b_tokens, b_speaker_embs, refs, wav_files):
|
581 |
+
if wav_file is None:
|
582 |
+
continue
|
583 |
+
|
584 |
+
with tempfile.NamedTemporaryFile(suffix=".wav") as enhanced_tmp:
|
585 |
+
if enhancer is not None:
|
586 |
+
enhancer = get_enhancer(enhancer) if isinstance(enhancer, str) else enhancer
|
587 |
+
enhancer(str(wav_file) + ".wav", enhanced_tmp.name)
|
588 |
+
# copy enhanced_tmp.name back to wav_file
|
589 |
+
print(f"copying enhanced file from {enhanced_tmp.name} to {str(wav_file) + '.wav'}.")
|
590 |
+
shutil.copy2(enhanced_tmp.name, str(wav_file) + ".wav")
|
591 |
+
shutil.copy2(str(wav_file) + ".wav", os.path.join(output_dir, output_name))
|
592 |
+
|
593 |
+
save_result_metadata(
|
594 |
+
wav_file,
|
595 |
+
ref_name,
|
596 |
+
text,
|
597 |
+
first_stage_ckpt_path,
|
598 |
+
second_stage_ckpt_path,
|
599 |
+
)
|
600 |
+
return [str(w) + ".wav" if not str(w).endswith(".wav") else str(w) for w in wav_files]
|
601 |
+
|
602 |
+
|
603 |
+
def sample_utterance(
|
604 |
+
text: str,
|
605 |
+
spk_cond_path: Optional[str],
|
606 |
+
spkemb_model,
|
607 |
+
first_stage_model,
|
608 |
+
second_stage_model,
|
609 |
+
enhancer: Optional[Union[Literal["df"], BaseEnhancer]],
|
610 |
+
first_stage_ckpt_path: str,
|
611 |
+
second_stage_ckpt_path: str,
|
612 |
+
guidance_scale: Optional[Tuple[float, float]],
|
613 |
+
max_new_tokens: int,
|
614 |
+
top_k: Optional[int],
|
615 |
+
top_p: Optional[float],
|
616 |
+
temperature: Optional[float],
|
617 |
+
output_name: str,
|
618 |
+
output_dir: str,
|
619 |
+
) -> str:
|
620 |
+
# NOTE: supports max. 220 characters atm.
|
621 |
+
# Long form synthesis coming soon...
|
622 |
+
MAX_CHARS = 220
|
623 |
+
if len(text) > MAX_CHARS:
|
624 |
+
print(
|
625 |
+
f"\n***WARNING: Max {MAX_CHARS} characters supported. Provided: {len(text)}. Truncating and generating speech...Can lead to unpredictable speech at the end.***"
|
626 |
+
)
|
627 |
+
|
628 |
+
return _sample_utterance_batch(
|
629 |
+
texts=[text],
|
630 |
+
spk_cond_paths=[spk_cond_path],
|
631 |
+
spkemb_model=spkemb_model,
|
632 |
+
first_stage_model=first_stage_model,
|
633 |
+
second_stage_model=second_stage_model,
|
634 |
+
enhancer=enhancer,
|
635 |
+
first_stage_ckpt_path=first_stage_ckpt_path,
|
636 |
+
second_stage_ckpt_path=second_stage_ckpt_path,
|
637 |
+
batch_size=1,
|
638 |
+
guidance_scale=guidance_scale,
|
639 |
+
max_new_tokens=max_new_tokens,
|
640 |
+
top_k=top_k,
|
641 |
+
top_p=top_p,
|
642 |
+
temperature=temperature,
|
643 |
+
output_name = output_name,
|
644 |
+
output_dir = output_dir
|
645 |
+
)[0]
|
646 |
+
|
647 |
+
|
648 |
+
def build_models(config_first_stage, config_second_stage, model_dir, device, use_kv_cache):
|
649 |
+
smodel = SpeakerEncoder(
|
650 |
+
weights_fpath=os.path.join(model_dir, "speaker_encoder.pt"), device=device, eval=True, verbose=False
|
651 |
+
)
|
652 |
+
data_adapter = FlattenedInterleavedEncodec2Codebook(end_of_audio_token=1024)
|
653 |
+
llm_first_stage = Model(
|
654 |
+
config_first_stage,
|
655 |
+
TrainedBPETokeniser,
|
656 |
+
EncodecDecoder,
|
657 |
+
data_adapter_fn=data_adapter.decode,
|
658 |
+
use_kv_cache=use_kv_cache,
|
659 |
+
)
|
660 |
+
data_adapter_second_stage = TiltedEncodec(end_of_audio_token=1024)
|
661 |
+
llm_second_stage = Model(
|
662 |
+
config_second_stage, TrainedBPETokeniser, EncodecDecoder, data_adapter_fn=data_adapter_second_stage.decode
|
663 |
+
)
|
664 |
+
return smodel, llm_first_stage, llm_second_stage
|
665 |
+
|
666 |
+
|
667 |
+
def get_first_stage_path(model_dir: str):
|
668 |
+
"""Absolute path to checkpoint for the first stage model."""
|
669 |
+
return os.path.join(os.path.expanduser(model_dir), "first_stage.pt")
|
670 |
+
|
671 |
+
|
672 |
+
def get_second_stage_path(model_dir: str):
|
673 |
+
"""Absolute path to checkpoint for the second stage model."""
|
674 |
+
return os.path.join(os.path.expanduser(model_dir), "second_stage.pt")
|
675 |
+
|
676 |
+
|
677 |
+
@dataclass
|
678 |
+
class SamplingControllerConfig:
|
679 |
+
"""
|
680 |
+
Sample from a trained model.
|
681 |
+
"""
|
682 |
+
|
683 |
+
spk_cond_path: str
|
684 |
+
"""Path to speaker reference file. Min. 30s of audio required. Supports both local paths & public URIs. Audio formats: wav, flac & mp3"""
|
685 |
+
|
686 |
+
huggingface_repo_id: str = "metavoiceio/metavoice-1B-v0.1"
|
687 |
+
"""Absolute path to the model directory."""
|
688 |
+
|
689 |
+
text: str = (
|
690 |
+
"This is a demo of text to speech by MetaVoice-1B, an open-source foundational audio model by MetaVoice."
|
691 |
+
)
|
692 |
+
"""Text to synthesise."""
|
693 |
+
|
694 |
+
num_samples: int = 1
|
695 |
+
"""Number of samples to generate from each model."""
|
696 |
+
|
697 |
+
max_new_tokens: int = 864 * 2
|
698 |
+
"""Maximum number of new tokens to generate from the first stage model."""
|
699 |
+
|
700 |
+
temperature: float = 1.0
|
701 |
+
"""Temperature for sampling applied to both models."""
|
702 |
+
|
703 |
+
top_k: Optional[int] = 200
|
704 |
+
"""Top k for sampling applied to both models."""
|
705 |
+
|
706 |
+
top_p: Optional[float] = None
|
707 |
+
"""Top p for sampling applied to first-stage model."""
|
708 |
+
|
709 |
+
seed: int = 1337
|
710 |
+
"""Random seed for sampling."""
|
711 |
+
|
712 |
+
device: Literal["cuda", "cpu"] = "cuda"
|
713 |
+
"""Device to use for sampling."""
|
714 |
+
|
715 |
+
dtype: Literal["bfloat16", "float16", "float32", "tfloat32"] = get_default_dtype()
|
716 |
+
"""Data type to use for sampling."""
|
717 |
+
|
718 |
+
compile: bool = False
|
719 |
+
"""Whether to compile the model using PyTorch 2.0."""
|
720 |
+
|
721 |
+
enhancer: Optional[Literal["df"]] = "df"
|
722 |
+
"""Enhancer to use for post-processing."""
|
723 |
+
|
724 |
+
init_from: str = "resume"
|
725 |
+
"""Either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl')."""
|
726 |
+
|
727 |
+
use_kv_cache: Optional[Literal["flash_decoding", "vanilla"]] = get_default_use_kv_cache()
|
728 |
+
"""Type of kv caching to use for inference: 1) [none] no kv caching, 2) [flash_decoding] use the
|
729 |
+
flash decoding kernel, 3) [vanilla] use torch attention with hand implemented kv-cache."""
|
730 |
+
|
731 |
+
output_dir: str = "samples/"
|
732 |
+
"""Relative path to output directory"""
|
733 |
+
|
734 |
+
guidance_scale: Optional[Tuple[float, float]] = (3.0, 1.0)
|
735 |
+
"""Guidance scale for sampling: (speaker conditioning guidance_scale, prompt conditioning guidance scale)."""
|
736 |
+
|
737 |
+
batch_size: int = 128
|
738 |
+
"""Batch size to use for sampling. Note that the batch size gets doubled when guidance is used. For H100, and 1B model,
|
739 |
+
1 w/ guidance and 1 w/o guidance work well (without kv-caching). With kv-caching, 128 (w/o guidance) and
|
740 |
+
64 (w/ guidance) works well."""
|
741 |
+
|
742 |
+
output_name:str = "generated-custom.wav"
|
743 |
+
|
744 |
+
def metavoice_gen(sampling_config):
|
745 |
|
746 |
+
sampling_config = sampling_config #tyro.cli(SamplingControllerConfig, use_underscores=True)
|
747 |
+
|
748 |
+
check_audio_file(sampling_config.spk_cond_path)
|
749 |
+
|
750 |
+
model_dir = snapshot_download(repo_id=sampling_config.huggingface_repo_id)
|
751 |
+
first_stage_ckpt_path = get_first_stage_path(model_dir)
|
752 |
+
second_stage_ckpt_path = get_second_stage_path(model_dir)
|
753 |
+
|
754 |
+
config_first_stage = InferenceConfig(
|
755 |
+
ckpt_path=first_stage_ckpt_path,
|
756 |
+
num_samples=sampling_config.num_samples,
|
757 |
+
seed=sampling_config.seed,
|
758 |
+
device=sampling_config.device,
|
759 |
+
dtype=sampling_config.dtype,
|
760 |
+
compile=sampling_config.compile,
|
761 |
+
init_from=sampling_config.init_from,
|
762 |
+
output_dir=sampling_config.output_dir,
|
763 |
+
)
|
764 |
+
|
765 |
+
config_second_stage = InferenceConfig(
|
766 |
+
ckpt_path=second_stage_ckpt_path,
|
767 |
+
num_samples=sampling_config.num_samples,
|
768 |
+
seed=sampling_config.seed,
|
769 |
+
device=sampling_config.device,
|
770 |
+
dtype=sampling_config.dtype,
|
771 |
+
compile=sampling_config.compile,
|
772 |
+
init_from=sampling_config.init_from,
|
773 |
+
output_dir=sampling_config.output_dir,
|
774 |
+
)
|
775 |
+
|
776 |
+
# sampling_config.max_new_tokens *= (
|
777 |
+
# 2 # deal with max_new_tokens for flattened interleaving! (should scale with num_codebooks?)
|
778 |
+
# )
|
779 |
+
|
780 |
+
# define models
|
781 |
+
smodel, llm_first_stage, llm_second_stage = build_models(
|
782 |
+
config_first_stage,
|
783 |
+
config_second_stage,
|
784 |
+
model_dir=model_dir,
|
785 |
+
device=sampling_config.device,
|
786 |
+
use_kv_cache=sampling_config.use_kv_cache,
|
787 |
+
)
|
788 |
+
|
789 |
+
sample_utterance(
|
790 |
+
sampling_config.text,
|
791 |
+
os.path.expanduser(sampling_config.spk_cond_path),
|
792 |
+
smodel,
|
793 |
+
llm_first_stage,
|
794 |
+
llm_second_stage,
|
795 |
+
sampling_config.enhancer,
|
796 |
+
first_stage_ckpt_path,
|
797 |
+
second_stage_ckpt_path,
|
798 |
+
sampling_config.guidance_scale,
|
799 |
+
max_new_tokens=sampling_config.max_new_tokens,
|
800 |
+
top_k=sampling_config.top_k,
|
801 |
+
top_p=sampling_config.top_p,
|
802 |
+
temperature=sampling_config.temperature,
|
803 |
+
output_name = sampling_config.output_name,
|
804 |
+
output_dir=sampling_config.output_dir,
|
805 |
+
)
|
806 |
+
|