aman-s-affinsys commited on
Commit
d1fe2cb
·
1 Parent(s): 439b1dd

feat:added files

Browse files
Files changed (3) hide show
  1. Dockerfile +13 -0
  2. main.py +58 -0
  3. requirements.txt +4 -0
Dockerfile ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+
3
+ RUN useradd -m -u 1000 user
4
+ USER user
5
+ ENV PATH="/home/user/.local/bin:$PATH"
6
+
7
+ WORKDIR /app
8
+
9
+ COPY --chown=user ./requirements.txt requirements.txt
10
+ RUN pip install --no-cache-dir --upgrade -r requirements.txt
11
+
12
+ COPY --chown=user . /app
13
+ CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
main.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # from fastapi import FastAPI
2
+ # from pydantic import BaseModel
3
+ # from transformers import RobertaTokenizerFast, RobertaForSequenceClassification, TextClassificationPipeline
4
+ # import uvicorn
5
+
6
+ # # Define FastAPI app
7
+ # app = FastAPI()
8
+
9
+ # # Load Model on Startup
10
+ # HUGGINGFACE_MODEL_PATH = "bespin-global/klue-roberta-small-3i4k-intent-classification"
11
+
12
+ # print("Loading model...") # Log message
13
+ # try:
14
+ # loaded_tokenizer = RobertaTokenizerFast.from_pretrained(HUGGINGFACE_MODEL_PATH)
15
+ # loaded_model = RobertaForSequenceClassification.from_pretrained(HUGGINGFACE_MODEL_PATH)
16
+
17
+ # # Create Text Classification Pipeline
18
+ # text_classifier = TextClassificationPipeline(
19
+ # tokenizer=loaded_tokenizer,
20
+ # model=loaded_model,
21
+ # return_all_scores=True
22
+ # )
23
+ # print("Model loaded successfully.") # Log message
24
+ # except Exception as e:
25
+ # print(f"Error loading model: {e}")
26
+ # text_classifier = None
27
+
28
+
29
+ # # Define Request Model
30
+ # class PredictionRequest(BaseModel):
31
+ # text: str
32
+
33
+ # @app.get("/")
34
+ # def home(request):
35
+ # return {"message":"Running fine"}
36
+ # # Prediction Endpoint
37
+ # @app.post("/predict")
38
+ # def predict_intent(request: PredictionRequest):
39
+ # if text_classifier is None:
40
+ # return {"error": "Model not found"}
41
+ # preds_list = text_classifier(request.text)
42
+ # best_pred = max(preds_list[0], key=lambda x: x["score"]) # Get highest-scoring intent
43
+ # return {"intent": best_pred["label"], "confidence": best_pred["score"]}
44
+
45
+
46
+ # # Launch FastAPI with Uvicorn
47
+ # if __name__ == "__main__":
48
+ # uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)
49
+
50
+
51
+ from fastapi import FastAPI
52
+
53
+ app=FastAPI()
54
+
55
+ @app.get("/")
56
+ def hello():
57
+ return {"hello":"success"}
58
+
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ fastapi
2
+ uvicorn
3
+ transformers
4
+ torch