Spaces:
Sleeping
Sleeping
from ctransformers import AutoModelForCausalLM | |
import gradio as gr | |
llm = AutoModelForCausalLM.from_pretrained("llama-2-7b-chat.Q4_K_S.gguf", | |
model_type='llama', | |
max_new_tokens = 1096, | |
threads = 3, | |
) | |
def stream(prompt, UL): | |
system_prompt = 'You are a helpful AI assistant' | |
E_INST = "</s>" | |
user, assistant = "<|user|>", "<|assistant|>" | |
prompt = f"{system_prompt}{E_INST}\n{user}\n{prompt.strip()}{E_INST}\n{assistant}\n" | |
return llm(prompt) | |
css = """ | |
h1 { | |
text-align: center; | |
} | |
#duplicate-button { | |
margin: auto; | |
color: white; | |
background: #1565c0; | |
border-radius: 100vh; | |
} | |
.contain { | |
max-width: 900px; | |
margin: auto; | |
padding-top: 1.5rem; | |
} | |
""" | |
chat_interface = gr.ChatInterface( | |
fn=stream, | |
#additional_inputs_accordion_name = "Credentials", | |
#additional_inputs=[ | |
# gr.Textbox(label="OpenAI Key", lines=1), | |
# gr.Textbox(label="Linkedin Access Token", lines=1), | |
#], | |
stop_btn=None, | |
examples=[ | |
["explain Large language model"], | |
["what is quantum computing"] | |
], | |
) | |
with gr.Blocks(css=css) as demo: | |
chat_interface.render() | |
if __name__ == "__main__": | |
demo.queue(max_size=10).launch() |