File size: 3,824 Bytes
0c3ff42
 
 
 
 
 
 
 
 
 
cf26dbd
0c3ff42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf26dbd
0c3ff42
 
 
 
 
 
cf26dbd
 
0c3ff42
cf26dbd
 
0c3ff42
 
cf26dbd
0c3ff42
 
 
 
cf26dbd
0c3ff42
 
 
 
 
 
cf26dbd
 
0c3ff42
 
 
 
 
 
 
 
 
 
cf26dbd
0c3ff42
 
 
 
 
 
 
cf26dbd
0c3ff42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import sys
sys.path.append('..')

# torch
import torch
import torchaudio
from torch import nn
from torch.utils.data import DataLoader

# modal
from modal import Mount, Secret, Stub, gpu, create_package_mounts

# internal
from pipelines.images import training_image_pip

# model
from dataset import VoiceDataset
from cnn import CNNetwork

# script defaults
BATCH_SIZE = 128
EPOCHS = 10
LEARNING_RATE = 0.001

TRAIN_FILE="data/train"
TEST_FILE="data/test"
SAMPLE_RATE=48000

stub = Stub(
    "void-training",
    image=training_image_pip,
)

@stub.function(
    gpu=gpu.A100(memory=20),
    mounts=[
        Mount.from_local_file(local_path='dataset.py'),
        Mount.from_local_file(local_path='cnn.py'),
    ],
    timeout=EPOCHS * 60,
    secret=Secret.from_name("wandb")
)
def train(
        model,
        train_dataloader,
        loss_fn,
        optimizer,
        device="cuda",
        epochs=10,
    ):
    import os

    import time
    import torch
    import wandb

    print("Begin model training...")
    begin = time.time()

    # set model to cuda
    model = model.to(device)

    # metrics
    training_acc = []
    training_loss = []

    wandb.init(project="void-training")

    for i in range(epochs):
        print(f"Epoch {i + 1}/{epochs}")
        then = time.time()

        # train model
        train_epoch_loss, train_epoch_acc = train_epoch.call(model, train_dataloader, loss_fn, optimizer, device)

        # training metrics
        training_loss.append(train_epoch_loss/len(train_dataloader))
        training_acc.append(train_epoch_acc/len(train_dataloader))
        wandb.log({'training_loss': training_loss[i], 'training_acc': training_acc[i]})        

        now = time.time()
        print("Training Loss: {:.2f}, Training Accuracy: {:.2f}, Time: {:.2f}s".format(training_loss[i], training_acc[i], now - then))

        print ("-------------------------------------------- \n")
    
    end = time.time()
    wandb.finish()
    
    print("-------- Finished Training --------")
    print("-------- Total Time -- {:.2f}s --------".format(end - begin))

@stub.function(
    gpu=gpu.A100(memory=20),
    mounts=[
        Mount.from_local_file(local_path='dataset.py'),
        Mount.from_local_file(local_path='cnn.py'),
    ]
)
def train_epoch(model, train_dataloader, loss_fn, optimizer, device):
    import torch
    from tqdm import tqdm

    train_loss = 0.0
    train_acc = 0.0
    total = 0.0

    model.train()

    for wav, target in tqdm(train_dataloader):
        wav, target = wav.to(device), target.to(device)

        # calculate loss
        output = model(wav)
        loss = loss_fn(output, target)

        # backprop and update weights
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # metrics
        train_loss += loss.item()
        prediction = torch.argmax(output, 1)
        train_acc += (prediction == target).sum().item()/len(prediction)
        total += 1
       
    return train_loss, train_acc

@stub.local_entrypoint()
def main():
    print("Initiating model training...")
    device = "cpu"

    # instantiating our dataset object and create data loader
    mel_spectrogram = torchaudio.transforms.MelSpectrogram(
        sample_rate=SAMPLE_RATE,
        n_fft=2048,
        hop_length=512,
        n_mels=128
    )

    # dataset/dataloader
    train_dataset = VoiceDataset(TRAIN_FILE, mel_spectrogram, device, time_limit_in_secs=3)
    train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)

    # construct model
    model = CNNetwork()

    # init loss function and optimizer
    loss_fn = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)

    # train model
    train.call(model, train_dataloader, loss_fn, optimizer, "cuda", EPOCHS)