Spaces:
Runtime error
Runtime error
File size: 6,225 Bytes
0c3ff42 da26829 0c3ff42 cf26dbd 0c3ff42 e8bade5 c540ede 0c3ff42 e8bade5 0c3ff42 e8bade5 0c3ff42 da26829 0c3ff42 da26829 cf26dbd 070e16b e8bade5 0c3ff42 cf26dbd 0c3ff42 cf26dbd 0c3ff42 da26829 cf26dbd da26829 0c3ff42 070e16b 0c3ff42 e8bade5 cf26dbd 0c3ff42 da26829 0c3ff42 e8bade5 0c3ff42 da26829 0c3ff42 070e16b e8bade5 070e16b e8bade5 070e16b da26829 0c3ff42 cf26dbd 0c3ff42 da26829 0c3ff42 070e16b 0c3ff42 e8bade5 0c3ff42 da26829 070e16b e8bade5 070e16b da26829 0c3ff42 da26829 0c3ff42 070e16b 0c3ff42 e8bade5 da26829 0c3ff42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import sys
sys.path.append('..')
import time
# torch
import torch
import torchaudio
from torch import nn
from torch.utils.data import DataLoader
# modal
from modal import Mount, Secret, Stub, gpu, create_package_mounts
# internal
from pipelines.images import training_image_pip
# model
from dataset import VoiceDataset
from cnn import CNNetwork
# script defaults
BATCH_SIZE = 128
EPOCHS = 100
LEARNING_RATE = 0.001
TRAIN_FILE="data/aisf/augmented/train"
TEST_FILE="data/aisf/augmented/test"
SAMPLE_RATE=48000
stub = Stub(
"void-training",
image=training_image_pip,
)
@stub.function(
gpu=gpu.A100(memory=20),
mounts=[
Mount.from_local_file(local_path='dataset.py'),
Mount.from_local_file(local_path='cnn.py'),
],
timeout=EPOCHS * 200,
secret=Secret.from_name("wandb"),
)
def train(
model,
train_dataloader,
loss_fn,
optimizer,
origin_device="cuda",
epochs=10,
test_dataloader=None,
wandb_enabled=False,
):
import os
import time
import torch
import wandb
print("Begin model training...")
begin = time.time()
modal_device = origin_device
# set model to cuda
if torch.cuda.is_available() and modal_device != "cuda":
modal_device = "cuda"
model = model.to(modal_device)
# metrics
training_acc = []
training_loss = []
testing_acc = []
testing_loss = []
if wandb_enabled:
wandb.init(project="void-training")
for i in range(epochs):
print(f"Epoch {i + 1}/{epochs}")
then = time.time()
# train model
model, train_epoch_loss, train_epoch_acc = train_epoch.call(model, train_dataloader, loss_fn, optimizer, modal_device)
# training metrics
training_loss.append(train_epoch_loss/len(train_dataloader))
training_acc.append(train_epoch_acc/len(train_dataloader))
if wandb_enabled:
wandb.log({'training_loss': training_loss[i], 'training_acc': training_acc[i]})
now = time.time()
print("Training Loss: {:.2f}, Training Accuracy: {:.4f}, Time: {:.2f}s".format(training_loss[i], training_acc[i], now - then))
if test_dataloader:
# test model
test_epoch_loss, test_epoch_acc = validate_epoch.call(model, test_dataloader, loss_fn, modal_device)
# testing metrics
testing_loss.append(test_epoch_loss/len(test_dataloader))
testing_acc.append(test_epoch_acc/len(test_dataloader))
print("Testing Loss: {:.2f}, Testing Accuracy {:.4f}".format(testing_loss[i], testing_acc[i]))
if wandb_enabled:
wandb.log({'testing_loss': testing_loss[i], 'testing_acc': testing_acc[i]})
print ("-------------------------------------------------------- \n")
end = time.time()
wandb.finish()
print("-------- Finished Training --------")
print("-------- Total Time -- {:.2f}s --------".format(end - begin))
return model.to(origin_device)
@stub.function(
gpu=gpu.A100(memory=20),
mounts=[
Mount.from_local_file(local_path='dataset.py'),
Mount.from_local_file(local_path='cnn.py'),
],
timeout=600,
)
def train_epoch(model, train_dataloader, loss_fn, optimizer, device):
import torch
from tqdm import tqdm
train_loss = 0.0
train_acc = 0.0
total = 0.0
model.train()
for wav, target in tqdm(train_dataloader):
wav, target = wav.to(device), target.to(device)
# calculate loss
output = model(wav)
loss = loss_fn(output, target)
# backprop and update weights
optimizer.zero_grad()
loss.backward()
optimizer.step()
# metrics
train_loss += loss.item()
prediction = torch.argmax(output, 1)
train_acc += (prediction == target).sum().item()/len(prediction)
total += 1
return model, train_loss, train_acc
@stub.function(
gpu=gpu.A100(memory=20),
mounts=[
Mount.from_local_file(local_path='dataset.py'),
Mount.from_local_file(local_path='cnn.py'),
],
)
def validate_epoch(model, test_dataloader, loss_fn, device):
from tqdm import tqdm
test_loss = 0.0
test_acc = 0.0
total = 0.0
model.eval()
with torch.no_grad():
for wav, target in tqdm(test_dataloader, "Testing batch..."):
wav, target = wav.to(device), target.to(device)
output = model(wav)
loss = loss_fn(output, target)
test_loss += loss.item()
prediciton = torch.argmax(output, 1)
test_acc += (prediciton == target).sum().item()/len(prediciton)
total += 1
return test_loss, test_acc
def save_model(model):
now = time.strftime("%Y%m%d_%H%M%S")
model_filename = f"models/void_{now}.pth"
torch.save(model.state_dict(), model_filename)
print(f"Trained void model saved at {model_filename}")
def get_device():
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
return device
@stub.local_entrypoint()
def main():
print("Initiating model training...")
device = get_device()
# instantiating our dataset object and create data loader
mel_spectrogram = torchaudio.transforms.MelSpectrogram(
sample_rate=SAMPLE_RATE,
n_fft=2048,
hop_length=512,
n_mels=128
)
# dataset/dataloader
train_dataset = VoiceDataset(TRAIN_FILE, mel_spectrogram, device, time_limit_in_secs=3)
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_dataset = VoiceDataset(TEST_FILE, mel_spectrogram, device, time_limit_in_secs=3)
test_dataloader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True)
# construct model
model = CNNetwork()
# init loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
# train model
model = train.call(model, train_dataloader, loss_fn, optimizer, device, EPOCHS, test_dataloader, True)
# save model
save_model(model)
|