File size: 11,094 Bytes
1cdc47e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from itertools import zip_longest
import numpy as np


class ChunkedGenerator:
    """
        Batched data generator, used for training.
        The sequences are split into equal-length chunks and padded as necessary.

        Arguments:
        batch_size -- the batch size to use for training
        cameras -- list of cameras, one element for each video (optional, used for semi-supervised training)
        poses_3d -- list of ground-truth 3D poses, one element for each video (optional, used for supervised training)
        poses_2d -- list of input 2D keypoints, one element for each video
        chunk_length -- number of output frames to predict for each training example (usually 1)
        pad -- 2D input padding to compensate for valid convolutions, per side (depends on the receptive field)
        causal_shift -- asymmetric padding offset when causal convolutions are used (usually 0 or "pad")
        shuffle -- randomly shuffle the dataset before each epoch
        random_seed -- initial seed to use for the random generator
        augment -- augment the dataset by flipping poses horizontally
        kps_left and kps_right -- list of left/right 2D keypoints if flipping is enabled
        joints_left and joints_right -- list of left/right 3D joints if flipping is enabled
    """
    def __init__(self, batch_size, cameras, poses_3d, poses_2d,
                 chunk_length, pad=0, causal_shift=0,
                 shuffle=True, random_seed=1234,
                 augment=False, kps_left=None, kps_right=None, joints_left=None, joints_right=None,
                 endless=False):
        assert poses_3d is None or len(poses_3d) == len(poses_2d), (len(poses_3d), len(poses_2d))
        assert cameras is None or len(cameras) == len(poses_2d)

        # Build lineage info
        pairs = []  # (seq_idx, start_frame, end_frame, flip) tuples
        for i in range(len(poses_2d)):
            assert poses_3d is None or poses_3d[i].shape[0] == poses_2d[i].shape[0]
            n_chunks = (poses_2d[i].shape[0] + chunk_length - 1) // chunk_length
            offset = (n_chunks * chunk_length - poses_2d[i].shape[0]) // 2
            bounds = np.arange(n_chunks + 1) * chunk_length - offset
            augment_vector = np.full(len(bounds)-1, False, dtype=bool)
            pairs += zip(np.repeat(i, len(bounds)-1), bounds[:-1], bounds[1:], augment_vector)
            if augment:
                pairs += zip(np.repeat(i, len(bounds)-1), bounds[:-1], bounds[1:], ~augment_vector)

            # Initialize buffers
            if cameras is not None:
                self.batch_cam = np.empty((batch_size, cameras[0].shape[-1]))
            if poses_3d is not None:
                self.batch_3d = np.empty((batch_size, chunk_length, poses_3d[0].shape[-2], poses_3d[0].shape[-1]))
            self.batch_2d = np.empty((batch_size, chunk_length + 2*pad, poses_2d[0].shape[-2], poses_2d[0].shape[-1]))

            self.num_batches = (len(pairs) + batch_size - 1) // batch_size
            self.batch_size = batch_size
            self.random = np.random.RandomState(random_seed)
            self.pairs = pairs
            self.shuffle = shuffle
            self.pad = pad
            self.causal_shift = causal_shift
            self.endless = endless
            self.state = None

            self.cameras = cameras
            self.poses_3d = poses_3d
            self.poses_2d = poses_2d

            self.augment = augment
            self.kps_left = kps_left
            self.kps_right = kps_right
            self.joints_left = joints_left
            self.joints_right = joints_right

    def num_frames(self):
        return self.num_batches * self.batch_size

    def random_state(self):
        return self.random

    def set_random_state(self, random):
        self.random = random

    def augment_enabled(self):
        return self.augment

    def next_pairs(self):
        if self.state is None:
            if self.shuffle:
                pairs = self.random.permutation(self.pairs)
            else:
                pairs = self.pairs
            return 0, pairs
        else:
            return self.state

    def next_epoch(self):
        enabled = True
        while enabled:
            start_idx, pairs = self.next_pairs()
            for b_i in range(start_idx, self.num_batches):
                chunks = pairs[b_i*self.batch_size : (b_i+1)*self.batch_size]
                for i, (seq_i, start_3d, end_3d, flip) in enumerate(chunks):
                    start_2d = start_3d - self.pad - self.causal_shift
                    end_2d = end_3d + self.pad - self.causal_shift

                    # 2D poses
                    seq_2d = self.poses_2d[seq_i]
                    low_2d = max(start_2d, 0)
                    high_2d = min(end_2d, seq_2d.shape[0])
                    pad_left_2d = low_2d - start_2d
                    pad_right_2d = end_2d - high_2d
                    if pad_left_2d != 0 or pad_right_2d != 0:
                        self.batch_2d[i] = np.pad(seq_2d[low_2d:high_2d], ((pad_left_2d, pad_right_2d), (0, 0), (0, 0)), "edge")
                    else:
                        self.batch_2d[i] = seq_2d[low_2d:high_2d]

                    if flip:
                        # Flip 2D keypoints
                        self.batch_2d[i, :, :, 0] *= -1
                        self.batch_2d[i, :, self.kps_left + self.kps_right] = self.batch_2d[i, :, self.kps_right + self.kps_left]

                    # 3D poses
                    if self.poses_3d is not None:
                        seq_3d = self.poses_3d[seq_i]
                        low_3d = max(start_3d, 0)
                        high_3d = min(end_3d, seq_3d.shape[0])
                        pad_left_3d = low_3d - start_3d
                        pad_right_3d = end_3d - high_3d
                        if pad_left_3d != 0 or pad_right_3d != 0:
                            self.batch_3d[i] = np.pad(seq_3d[low_3d:high_3d], ((pad_left_3d, pad_right_3d), (0, 0), (0, 0)), "edge")
                        else:
                            self.batch_3d[i] = seq_3d[low_3d:high_3d]

                        if flip:
                            # Flip 3D joints
                            self.batch_3d[i, :, :, 0] *= -1
                            self.batch_3d[i, :, self.joints_left + self.joints_right] = \
                                    self.batch_3d[i, :, self.joints_right + self.joints_left]

                    # Cameras
                    if self.cameras is not None:
                        self.batch_cam[i] = self.cameras[seq_i]
                        if flip:
                            # Flip horizontal distortion coefficients
                            self.batch_cam[i, 2] *= -1
                            self.batch_cam[i, 7] *= -1

                if self.endless:
                    self.state = (b_i + 1, pairs)
                if self.poses_3d is None and self.cameras is None:
                    yield None, None, self.batch_2d[:len(chunks)]
                elif self.poses_3d is not None and self.cameras is None:
                    yield None, self.batch_3d[:len(chunks)], self.batch_2d[:(len(chunks))]
                elif self.poses_3d is None:
                    yield self.batch_cam, None, self.batch_2d[:len(chunks)]
                else:
                    yield self.batch_cam[:len(chunks)], self.batch_3d[:len(chunks)], self.batch_2d[:len(chunks)]

            if self.endless:
                self.state = None
            else:
                enabled = False


class UnchunkedGenerator:
    """
    Non-batched data generator, used for testing.
    Sequences are returned one at a time (i.e. batch size = 1), without chunking.

    If data augmentation is enabled, the batches contain two sequences (i.e. batch size = 2),
    the second of which is a mirrored version of the first.

    Arguments:
    cameras -- list of cameras, one element for each video (optional, used for semi-supervised training)
    poses_3d -- list of ground-truth 3D poses, one element for each video (optional, used for supervised training)
    poses_2d -- list of input 2D keypoints, one element for each video
    pad -- 2D input padding to compensate for valid convolutions, per side (depends on the receptive field)
    causal_shift -- asymmetric padding offset when causal convolutions are used (usually 0 or "pad")
    augment -- augment the dataset by flipping poses horizontally
    kps_left and kps_right -- list of left/right 2D keypoints if flipping is enabled
    joints_left and joints_right -- list of left/right 3D joints if flipping is enabled
    """

    def __init__(self, cameras, poses_3d, poses_2d, pad=0, causal_shift=0,
                 augment=False, kps_left=None, kps_right=None, joints_left=None, joints_right=None):
        assert poses_3d is None or len(poses_3d) == len(poses_2d)
        assert cameras is None or len(cameras) == len(poses_2d)

        self.augment = augment
        self.kps_left = kps_left
        self.kps_right = kps_right
        self.joints_left = joints_left
        self.joints_right = joints_right

        self.pad = pad
        self.causal_shift = causal_shift
        self.cameras = [] if cameras is None else cameras
        self.poses_3d = [] if poses_3d is None else poses_3d
        self.poses_2d = poses_2d

    def num_frames(self):
        count = 0
        for p in self.poses_2d:
            count += p.shape[0]
        return count

    def augment_enabled(self):
        return self.augment

    def set_augment(self, augment):
        self.augment = augment

    def next_epoch(self):
        for seq_cam, seq_3d, seq_2d in zip_longest(self.cameras, self.poses_3d, self.poses_2d):
            batch_cam = None if seq_cam is None else np.expand_dims(seq_cam, axis=0)
            batch_3d = None if seq_3d is None else np.expand_dims(seq_3d, axis=0)
            batch_2d = np.expand_dims(np.pad(seq_2d,
                                             ((self.pad + self.causal_shift, self.pad - self.causal_shift), (0, 0),
                                              (0, 0)),
                                             'edge'), axis=0)
            if self.augment:
                # Append flipped version
                if batch_cam is not None:
                    batch_cam = np.concatenate((batch_cam, batch_cam), axis=0)
                    batch_cam[1, 2] *= -1
                    batch_cam[1, 7] *= -1

                if batch_3d is not None:
                    batch_3d = np.concatenate((batch_3d, batch_3d), axis=0)
                    batch_3d[1, :, :, 0] *= -1
                    batch_3d[1, :, self.joints_left + self.joints_right] = batch_3d[1, :,
                                                                           self.joints_right + self.joints_left]

                batch_2d = np.concatenate((batch_2d, batch_2d), axis=0)
                batch_2d[1, :, :, 0] *= -1
                batch_2d[1, :, self.kps_left + self.kps_right] = batch_2d[1, :, self.kps_right + self.kps_left]

            yield batch_cam, batch_3d, batch_2d