File size: 14,199 Bytes
1cdc47e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
from __future__ import division

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import cv2
import os
import sys

from util import convert2cpu as cpu
from util import predict_transform


class test_net(nn.Module):
    def __init__(self, num_layers, input_size):
        super(test_net, self).__init__()
        self.num_layers= num_layers
        self.linear_1 = nn.Linear(input_size, 5)
        self.middle = nn.ModuleList([nn.Linear(5,5) for x in range(num_layers)])
        self.output = nn.Linear(5,2)

    def forward(self, x):
        x = x.view(-1)
        fwd = nn.Sequential(self.linear_1, *self.middle, self.output)
        return fwd(x)


def get_test_input():
    img = cv2.imread("dog-cycle-car.png")
    img = cv2.resize(img, (416, 416))
    img_ = img[:, :, ::-1].transpose((2, 0, 1))
    img_ = img_[np.newaxis, :, :, :]/255.0
    img_ = torch.from_numpy(img_).float()
    return img_


def parse_cfg(cfgfile):
    """
    Takes a configuration file

    Returns a list of blocks. Each blocks describes a block in the neural
    network to be built. Block is represented as a dictionary in the list

    """
    # cfgfile = os.path.join(sys.path[-1], cfgfile)
    file = open(cfgfile, 'r')
    lines = file.read().split('\n')     # store the lines in a list
    lines = [x for x in lines if len(x) > 0]  # get read of the empty lines
    lines = [x for x in lines if x[0] != '#']
    lines = [x.rstrip().lstrip() for x in lines]

    block = {}
    blocks = []

    for line in lines:
        if line[0] == "[":               # This marks the start of a new block
            if len(block) != 0:
                blocks.append(block)
                block = {}
            block["type"] = line[1:-1].rstrip()
        else:
            key,value = line.split("=")
            block[key.rstrip()] = value.lstrip()
    blocks.append(block)

    return blocks


class MaxPoolStride1(nn.Module):
    def __init__(self, kernel_size):
        super(MaxPoolStride1, self).__init__()
        self.kernel_size = kernel_size
        self.pad = kernel_size - 1

    def forward(self, x):
        padded_x = F.pad(x, (0, self.pad, 0, self.pad), mode="replicate")
        pooled_x = nn.MaxPool2d(self.kernel_size, self.pad)(padded_x)
        return pooled_x


class EmptyLayer(nn.Module):
    def __init__(self):
        super(EmptyLayer, self).__init__()


class DetectionLayer(nn.Module):
    def __init__(self, anchors):
        super(DetectionLayer, self).__init__()
        self.anchors = anchors

    def forward(self, x, inp_dim, num_classes, confidence):
        x = x.data
        global CUDA
        prediction = x
        prediction = predict_transform(prediction, inp_dim, self.anchors, num_classes, confidence, CUDA)
        return prediction


class Upsample(nn.Module):
    def __init__(self, stride=2):
        super(Upsample, self).__init__()
        self.stride = stride

    def forward(self, x):
        stride = self.stride
        assert(x.data.dim() == 4)
        B = x.data.size(0)
        C = x.data.size(1)
        H = x.data.size(2)
        W = x.data.size(3)
        ws = stride
        hs = stride
        x = x.view(B, C, H, 1, W, 1).expand(B, C, H, stride, W, stride).contiguous().view(B, C, H*stride, W*stride)
        return x


class ReOrgLayer(nn.Module):
    def __init__(self, stride=2):
        super(ReOrgLayer, self).__init__()
        self.stride= stride

    def forward(self, x):
        assert(x.data.dim() == 4)
        B, C, H, W = x.data.shape
        hs = self.stride
        ws = self.stride
        assert(H % hs == 0),  "The stride " + str(self.stride) + " is not a proper divisor of height " + str(H)
        assert(W % ws == 0),  "The stride " + str(self.stride) + " is not a proper divisor of height " + str(W)
        x = x.view(B, C, H // hs, hs, W // ws, ws).transpose(-2, -3).contiguous()
        x = x.view(B, C, H // hs * W // ws, hs, ws)
        x = x.view(B, C, H // hs * W // ws, hs*ws).transpose(-1, -2).contiguous()
        x = x.view(B, C, ws*hs, H // ws, W // ws).transpose(1, 2).contiguous()
        x = x.view(B, C*ws*hs, H // ws, W // ws)
        return x


def create_modules(blocks):
    net_info = blocks[0]     # Captures the information about the input and pre-processing

    module_list = nn.ModuleList()

    index = 0    # indexing blocks helps with implementing route  layers (skip connections)
    prev_filters = 3
    output_filters = []

    for x in blocks:
        module = nn.Sequential()
        if x["type"] == "net":
            continue

        # If it's a convolutional layer
        if x["type"] == "convolutional":
            # Get the info about the layer
            activation = x["activation"]
            try:
                batch_normalize = int(x["batch_normalize"])
                bias = False
            except:
                batch_normalize = 0
                bias = True

            filters= int(x["filters"])
            padding = int(x["pad"])
            kernel_size = int(x["size"])
            stride = int(x["stride"])

            if padding:
                pad = (kernel_size - 1) // 2
            else:
                pad = 0

            # Add the convolutional layer
            conv = nn.Conv2d(prev_filters, filters, kernel_size, stride, pad, bias = bias)
            module.add_module("conv_{0}".format(index), conv)

            # Add the Batch Norm Layer
            if batch_normalize:
                bn = nn.BatchNorm2d(filters)
                module.add_module("batch_norm_{0}".format(index), bn)

            # Check the activation.
            # It is either Linear or a Leaky ReLU for YOLO
            if activation == "leaky":
                activn = nn.LeakyReLU(0.1, inplace = True)
                module.add_module("leaky_{0}".format(index), activn)

        # If it's an upsampling layer
        # We use Bilinear2dUpsampling

        elif x["type"] == "upsample":
            stride = int(x["stride"])
#           upsample = Upsample(stride)
            upsample = nn.Upsample(scale_factor=2, mode="nearest")
            module.add_module("upsample_{}".format(index), upsample)

        # If it is a route layer
        elif (x["type"] == "route"):
            x["layers"] = x["layers"].split(',')

            # Start  of a route
            start = int(x["layers"][0])

            # end, if there exists one.
            try:
                end = int(x["layers"][1])
            except:
                end = 0

            # Positive anotation
            if start > 0:
                start = start - index

            if end > 0:
                end = end - index

            route = EmptyLayer()
            module.add_module("route_{0}".format(index), route)

            if end < 0:
                filters = output_filters[index + start] + output_filters[index + end]
            else:
                filters = output_filters[index + start]

        # shortcut corresponds to skip connection
        elif x["type"] == "shortcut":
            from_ = int(x["from"])
            shortcut = EmptyLayer()
            module.add_module("shortcut_{}".format(index), shortcut)

        elif x["type"] == "maxpool":
            stride = int(x["stride"])
            size = int(x["size"])
            if stride != 1:
                maxpool = nn.MaxPool2d(size, stride)
            else:
                maxpool = MaxPoolStride1(size)

            module.add_module("maxpool_{}".format(index), maxpool)

        # Yolo is the detection layer
        elif x["type"] == "yolo":
            mask = x["mask"].split(",")
            mask = [int(x) for x in mask]

            anchors = x["anchors"].split(",")
            anchors = [int(a) for a in anchors]
            anchors = [(anchors[i], anchors[i+1]) for i in range(0, len(anchors),2)]
            anchors = [anchors[i] for i in mask]

            detection = DetectionLayer(anchors)
            module.add_module("Detection_{}".format(index), detection)

        else:
            print("Something I dunno")
            assert False

        module_list.append(module)
        prev_filters = filters
        output_filters.append(filters)
        index += 1

    return (net_info, module_list)


class Darknet(nn.Module):
    def __init__(self, cfgfile):
        super(Darknet, self).__init__()
        self.blocks = parse_cfg(cfgfile)
        self.net_info, self.module_list = create_modules(self.blocks)
        self.header = torch.IntTensor([0, 0, 0, 0])
        self.seen = 0

    def get_blocks(self):
        return self.blocks

    def get_module_list(self):
        return self.module_list

    def forward(self, x, CUDA):
        detections = []
        modules = self.blocks[1:]
        outputs = {}   # We cache the outputs for the route layer

        write = 0
        for i in range(len(modules)):

            module_type = (modules[i]["type"])
            if module_type == "convolutional" or module_type == "upsample" or module_type == "maxpool":

                x = self.module_list[i](x)
                outputs[i] = x

            elif module_type == "route":
                layers = modules[i]["layers"]
                layers = [int(a) for a in layers]

                if (layers[0]) > 0:
                    layers[0] = layers[0] - i

                if len(layers) == 1:
                    x = outputs[i + (layers[0])]

                else:
                    if (layers[1]) > 0:
                        layers[1] = layers[1] - i

                    map1 = outputs[i + layers[0]]
                    map2 = outputs[i + layers[1]]

                    x = torch.cat((map1, map2), 1)
                outputs[i] = x

            elif module_type == "shortcut":
                from_ = int(modules[i]["from"])
                x = outputs[i-1] + outputs[i+from_]
                outputs[i] = x

            elif module_type == 'yolo':

                anchors = self.module_list[i][0].anchors
                # Get the input dimensions
                inp_dim = int(self.net_info["height"])

                # Get the number of classes
                num_classes = int(modules[i]["classes"])

                # Output the result
                x = x.data
                x = predict_transform(x, inp_dim, anchors, num_classes, CUDA)

                if type(x) == int:
                    continue

                if not write:
                    detections = x
                    write = 1
                else:
                    detections = torch.cat((detections, x), 1)

                outputs[i] = outputs[i-1]

        try:
            return detections
        except:
            return 0

    def load_weights(self, weightfile):
        # Introduction: https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-3/
        # Open the weights file
        # weightfile = os.path.join(sys.path[-1], weightfile)
        fp = open(weightfile, "rb")

        # The first 5 values are header information
        # 1. Major version number
        # 2. Minor Version Number
        # 3. Subversion number
        # 4.5 Images seen by the network (during training)
        header = np.fromfile(fp, dtype = np.int32, count = 5)
        self.header = torch.from_numpy(header)
        self.seen = self.header[3]

        # The rest of the values are the weights
        # Let's load them up
        weights = np.fromfile(fp, dtype = np.float32)

        ptr = 0
        for i in range(len(self.module_list)):
            module_type = self.blocks[i + 1]["type"]

            if module_type == "convolutional":
                model = self.module_list[i]
                try:
                    batch_normalize = int(self.blocks[i+1]["batch_normalize"])
                except:
                    batch_normalize = 0

                conv = model[0]

                if (batch_normalize):
                    bn = model[1]

                    # Get the number of weights of Batch Norm Layer
                    num_bn_biases = bn.bias.numel()

                    # Load the weights
                    bn_biases = torch.from_numpy(weights[ptr:ptr + num_bn_biases])
                    ptr += num_bn_biases

                    bn_weights = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
                    ptr += num_bn_biases

                    bn_running_mean = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
                    ptr += num_bn_biases

                    bn_running_var = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
                    ptr += num_bn_biases

                    # Cast the loaded weights into dims of model weights.
                    bn_biases = bn_biases.view_as(bn.bias.data)
                    bn_weights = bn_weights.view_as(bn.weight.data)
                    bn_running_mean = bn_running_mean.view_as(bn.running_mean)
                    bn_running_var = bn_running_var.view_as(bn.running_var)

                    # Copy the data to model
                    bn.bias.data.copy_(bn_biases)
                    bn.weight.data.copy_(bn_weights)
                    bn.running_mean.copy_(bn_running_mean)
                    bn.running_var.copy_(bn_running_var)

                else:
                    # Number of biases
                    num_biases = conv.bias.numel()

                    # Load the weights
                    conv_biases = torch.from_numpy(weights[ptr: ptr + num_biases])
                    ptr = ptr + num_biases

                    # reshape the loaded weights according to the dims of the model weights
                    conv_biases = conv_biases.view_as(conv.bias.data)

                    # Finally copy the data
                    conv.bias.data.copy_(conv_biases)

                # Let us load the weights for the Convolutional layers
                num_weights = conv.weight.numel()

                # Do the same as above for weights
                conv_weights = torch.from_numpy(weights[ptr:ptr+num_weights])
                ptr = ptr + num_weights

                conv_weights = conv_weights.view_as(conv.weight.data)
                conv.weight.data.copy_(conv_weights)