Spaces:
Runtime error
Runtime error
File size: 8,165 Bytes
1cdc47e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
from __future__ import division
import torch
import numpy as np
import cv2
import os.path as osp
from bbox import bbox_iou
def get_path(cur_file):
cur_dir = osp.dirname(osp.realpath(cur_file))
project_root = osp.join(cur_dir, '../../../')
chk_root = osp.join(project_root, 'checkpoint/')
data_root = osp.join(project_root, 'data/')
return project_root, chk_root, data_root, cur_dir
def count_parameters(model):
return sum(p.numel() for p in model.parameters())
def count_learnable_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def convert2cpu(matrix):
if matrix.is_cuda:
return torch.FloatTensor(matrix.size()).copy_(matrix)
else:
return matrix
def predict_transform(prediction, inp_dim, anchors, num_classes, CUDA = True):
batch_size = prediction.size(0)
stride = inp_dim // prediction.size(2)
grid_size = inp_dim // stride
bbox_attrs = 5 + num_classes
num_anchors = len(anchors)
anchors = [(a[0]/stride, a[1]/stride) for a in anchors]
prediction = prediction.view(batch_size, bbox_attrs*num_anchors, grid_size*grid_size)
prediction = prediction.transpose(1, 2).contiguous()
prediction = prediction.view(batch_size, grid_size*grid_size*num_anchors, bbox_attrs)
# Sigmoid the centre_X, centre_Y. and object confidencce
prediction[:, :, 0] = torch.sigmoid(prediction[:, :, 0])
prediction[:, :, 1] = torch.sigmoid(prediction[:, :, 1])
prediction[:, :, 4] = torch.sigmoid(prediction[:, :, 4])
# Add the center offsets
grid_len = np.arange(grid_size)
a, b = np.meshgrid(grid_len, grid_len)
x_offset = torch.FloatTensor(a).view(-1, 1)
y_offset = torch.FloatTensor(b).view(-1, 1)
if CUDA:
x_offset = x_offset.cuda()
y_offset = y_offset.cuda()
x_y_offset = torch.cat((x_offset, y_offset), 1).repeat(1, num_anchors).view(-1, 2).unsqueeze(0)
prediction[:, :, :2] += x_y_offset
# log space transform height and the width
anchors = torch.FloatTensor(anchors)
if CUDA:
anchors = anchors.cuda()
anchors = anchors.repeat(grid_size*grid_size, 1).unsqueeze(0)
prediction[:, :, 2:4] = torch.exp(prediction[:, :, 2:4])*anchors
# Softmax the class scores
prediction[:, :, 5: 5 + num_classes] = torch.sigmoid((prediction[:, :, 5: 5 + num_classes]))
prediction[:, :, :4] *= stride
return prediction
def load_classes(namesfile):
fp = open(namesfile, "r")
names = fp.read().split("\n")[:-1]
return names
def get_im_dim(im):
im = cv2.imread(im)
w, h = im.shape[1], im.shape[0]
return w, h
def unique(tensor):
tensor_np = tensor.cpu().numpy()
unique_np = np.unique(tensor_np)
unique_tensor = torch.from_numpy(unique_np)
tensor_res = tensor.new(unique_tensor.shape)
tensor_res.copy_(unique_tensor)
return tensor_res
# ADD SOFT NMS
def write_results(prediction, confidence, num_classes, nms=True, nms_conf=0.4, det_hm=False):
"""
https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch-part-4/
prediction: (B x 10647 x 85)
B: the number of images in a batch,
10647: the number of bounding boxes predicted per image. (52×52+26×26+13×13)×3=10647
85: the number of bounding box attributes. (c_x, c_y, w, h, object confidence, and 80 class scores)
output: Num_obj × [img_index, x_1, y_1, x_2, y_2, object confidence, class_score, label_index]
"""
conf_mask = (prediction[:, :, 4] > confidence).float().unsqueeze(2)
prediction = prediction*conf_mask
box_a = prediction.new(prediction.shape)
box_a[:, :, 0] = (prediction[:, :, 0] - prediction[:, :, 2]/2)
box_a[:, :, 1] = (prediction[:, :, 1] - prediction[:, :, 3]/2)
box_a[:, :, 2] = (prediction[:, :, 0] + prediction[:, :, 2]/2)
box_a[:, :, 3] = (prediction[:, :, 1] + prediction[:, :, 3]/2)
prediction[:, :, :4] = box_a[:, :, :4]
batch_size = prediction.size(0)
output = prediction.new(1, prediction.size(2) + 1)
write = False
for ind in range(batch_size):
# select the image from the batch
image_pred = prediction[ind]
# Get the class having maximum score, and the index of that class
# Get rid of num_classes softmax scores
# Add the class index and the class score of class having maximum score
max_conf, max_conf_index = torch.max(image_pred[:, 5:5 + num_classes], 1)
max_conf = max_conf.float().unsqueeze(1)
max_conf_index = max_conf_index.float().unsqueeze(1)
seq = (image_pred[:, :5], max_conf, max_conf_index)
image_pred = torch.cat(seq, 1) # image_pred:(10647, 7) 7:[x1, y1, x2, y2, obj_score, max_conf, max_conf_index]
# Get rid of the zero entries
non_zero_ind = (torch.nonzero(image_pred[:, 4]))
image_pred__ = image_pred[non_zero_ind.squeeze(), :].view(-1, 7)
# filters out people id
if det_hm:
cls_mask = (image_pred__[:, -1] == 0).float()
class_mask_ind = torch.nonzero(cls_mask).squeeze()
image_pred_ = image_pred__[class_mask_ind].view(-1, 7)
if torch.sum(cls_mask) == 0:
return image_pred_
else:
image_pred_ = image_pred__
# Get the various classes detected in the image
try:
# img_classes = unique(image_pred_[:, -1])
img_classes = torch.unique(image_pred_[:, -1], sorted=True).float()
except:
continue
# We will do NMS classwise
# import ipdb;ipdb.set_trace()
for cls in img_classes:
# get the detections with one particular class
cls_mask = image_pred_*(image_pred_[:, -1] == cls).float().unsqueeze(1)
class_mask_ind = torch.nonzero(cls_mask[:, -2]).squeeze()
image_pred_class = image_pred_[class_mask_ind].view(-1, 7)
# sort the detections such that the entry with the maximum objectness
# confidence is at the top
conf_sort_index = torch.sort(image_pred_class[:, 4], descending=True)[1]
image_pred_class = image_pred_class[conf_sort_index]
idx = image_pred_class.size(0)
# from soft_NMS import soft_nms
# boxes = image_pred_class[:,:4]
# scores = image_pred_class[:, 4]
# k, N = soft_nms(boxes, scores, method=2)
# image_pred_class = image_pred_class[k]
# if nms has to be done
if nms:
# For each detection
for i in range(idx):
# Get the IOUs of all boxes that come after the one we are looking at
# in the loop
try:
ious = bbox_iou(image_pred_class[i].unsqueeze(0), image_pred_class[i+1:])
except ValueError:
break
except IndexError:
break
# Zero out all the detections that have IoU > threshold
iou_mask = (ious < nms_conf).float().unsqueeze(1)
image_pred_class[i+1:] *= iou_mask
# Remove the zero entries
non_zero_ind = torch.nonzero(image_pred_class[:, 4]).squeeze()
image_pred_class = image_pred_class[non_zero_ind].view(-1, 7)
# Concatenate the batch_id of the image to the detection
# this helps us identify which image does the detection correspond to
# We use a linear structure to hold ALL the detections from the batch
# the batch_dim is flattened
# batch is identified by extra batch column
batch_ind = image_pred_class.new(image_pred_class.size(0), 1).fill_(ind)
seq = batch_ind, image_pred_class
if not write:
output = torch.cat(seq, 1)
write = True
else:
out = torch.cat(seq, 1)
output = torch.cat((output, out))
return output
|