File size: 9,822 Bytes
1cdc47e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import matplotlib
matplotlib.use('Agg')

import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, writers
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import subprocess as sp
from tools.color_edge import h36m_color_edge


def get_resolution(filename):
    command = ['ffprobe', '-v', 'error', '-select_streams', 'v:0',
               '-show_entries', 'stream=width,height', '-of', 'csv=p=0', filename]
    with sp.Popen(command, stdout=sp.PIPE, bufsize=-1) as pipe:
        for line in pipe.stdout:
            w, h = line.decode().strip().split(',')
            return int(w), int(h)


def get_fps(filename):
    command = ['ffprobe', '-v', 'error', '-select_streams', 'v:0',
               '-show_entries', 'stream=r_frame_rate', '-of', 'csv=p=0', filename]
    with sp.Popen(command, stdout=sp.PIPE, bufsize=-1) as pipe:
        for line in pipe.stdout:
            a, b = line.decode().strip().split('/')
            return int(a) / int(b)


def read_video(filename, skip=0, limit=-1):
    w, h = get_resolution(filename)

    command = ['ffmpeg',
               '-i', filename,
               '-f', 'image2pipe',
               '-pix_fmt', 'rgb24',
               '-vsync', '0',
               '-vcodec', 'rawvideo', '-']

    i = 0
    with sp.Popen(command, stdout=sp.PIPE, bufsize=-1) as pipe:
        while True:
            data = pipe.stdout.read(w * h * 3)
            if not data:
                break
            i += 1
            if i > limit and limit != -1:
                continue
            if i > skip:
                yield np.frombuffer(data, dtype='uint8').reshape((h, w, 3))


def downsample_tensor(X, factor):
    length = X.shape[0] // factor * factor
    return np.mean(X[:length].reshape(-1, factor, *X.shape[1:]), axis=1)


def render_animation(keypoints, keypoints_metadata, poses, skeleton, fps, bitrate, azim, output, viewport, limit=-1,
                     downsample=1, size=5, input_video_path=None, com_reconstrcution=False, input_video_skip=0):
    """
    TODO
    Render an animation. The supported output modes are:
     -- 'interactive': display an interactive figure
                       (also works on notebooks if associated with %matplotlib inline)
     -- 'html': render the animation as HTML5 video. Can be displayed in a notebook using HTML(...).
     -- 'filename.mp4': render and export the animation as an h264 video (requires ffmpeg).
     -- 'filename.gif': render and export the animation a gif file (requires imagemagick).
    """
    plt.ioff()

    num_person = keypoints.shape[1]
    if num_person == 2 and com_reconstrcution:

        fig = plt.figure(figsize=(size * (1 + len(poses)), size))
        ax_in = fig.add_subplot(1, 2, 1)
    else:
        fig = plt.figure(figsize=(size * (1 + len(poses)), size))
        ax_in = fig.add_subplot(1, 1 + len(poses), 1)

    ax_in.get_xaxis().set_visible(False)
    ax_in.get_yaxis().set_visible(False)
    ax_in.set_axis_off()
    # ax_in.set_title('Input')

    ax_3d = []
    lines_3d = []
    radius = 1.7

    if num_person == 2 and com_reconstrcution:
        ax = fig.add_subplot(1, 2, 2, projection='3d')
        ax.view_init(elev=15., azim=azim)
        ax.set_xlim3d([-radius, radius])
        ax.set_zlim3d([0, radius])
        ax.set_ylim3d([-radius, radius])
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.set_zticklabels([])
        ax.dist = 7.5
        ax_3d.append(ax)
        lines_3d.append([])

        poses = list(poses.values())
    else:
        for index, (title, data) in enumerate(poses.items()):
            ax = fig.add_subplot(1, 1 + len(poses), index + 2, projection='3d')

            ax.view_init(elev=15., azim=azim)
            ax.set_xlim3d([-radius / 2, radius / 2])
            ax.set_zlim3d([0, radius])
            ax.set_ylim3d([-radius / 2, radius / 2])
            ax.set_aspect('equal')
            ax.set_xticklabels([])
            ax.set_yticklabels([])
            ax.set_zticklabels([])
            ax.dist = 7.5
            # ax.set_title(title)  # , pad=35
            ax_3d.append(ax)
            lines_3d.append([])
        poses = list(poses.values())

    # Decode video
    if input_video_path is None:
        # Black background
        all_frames = np.zeros((keypoints.shape[0], viewport[1], viewport[0]), dtype='uint8')
    else:
        # Load video using ffmpeg
        all_frames = []
        for f in read_video(input_video_path, skip=input_video_skip, limit=limit):
            all_frames.append(f)
        effective_length = min(keypoints.shape[0], len(all_frames))
        all_frames = all_frames[:effective_length]

        keypoints = keypoints[input_video_skip:]  # todo remove
        for idx in range(len(poses)):
            poses[idx] = poses[idx][input_video_skip:]

        if fps is None:
            fps = get_fps(input_video_path)

    if downsample > 1:
        keypoints = downsample_tensor(keypoints, downsample)
        all_frames = downsample_tensor(np.array(all_frames), downsample).astype('uint8')
        for idx in range(len(poses)):
            poses[idx] = downsample_tensor(poses[idx], downsample)
        fps /= downsample

    initialized = False
    image = None
    lines = []
    points = None

    if limit < 1:
        limit = len(all_frames)
    else:
        limit = min(limit, len(all_frames))

    parents = skeleton.parents()
    index = [i for i in np.arange(17)]

    def update_video(i):
        nonlocal initialized, image, lines, points

        joints_right_2d = keypoints_metadata['keypoints_symmetry'][1]

        if num_person == 2:
            joints_right_2d_two = []
            joints_right_2d_two += joints_right_2d
            joints_right_2d_second = [i + 17 for i in joints_right_2d]
            joints_right_2d_two += joints_right_2d_second

            colors_2d = np.full(34, 'black')
            colors_2d[joints_right_2d_two] = 'red'
        else:
            colors_2d = np.full(17, 'black')
            colors_2d[joints_right_2d] = 'red'

        if not initialized:
            image = ax_in.imshow(all_frames[i], aspect='equal')

            for j, j_parent in zip(index, parents):
                if j_parent == -1:
                    continue

                if len(parents) == 17 and keypoints_metadata['layout_name'] != 'coco':
                    for m in range(num_person):
                        # Draw skeleton only if keypoints match (otherwise we don't have the parents definition)
                        lines.append(ax_in.plot([keypoints[i, m, j, 0], keypoints[i, m, j_parent, 0]],
                                                [keypoints[i, m, j, 1], keypoints[i, m, j_parent, 1]],
                                                color='pink'))

                # Apply different colors for each joint
                col = h36m_color_edge(j)

                if com_reconstrcution:
                    for pose in poses:
                        pos = pose[i]
                        lines_3d[0].append(ax_3d[0].plot([pos[j, 0], pos[j_parent, 0]],
                                                         [pos[j, 1], pos[j_parent, 1]],
                                                         [pos[j, 2], pos[j_parent, 2]], zdir='z', c=col, linewidth=3))
                else:
                    for n, ax in enumerate(ax_3d):
                        pos = poses[n][i]
                        lines_3d[n].append(ax.plot([pos[j, 0], pos[j_parent, 0]],
                                                   [pos[j, 1], pos[j_parent, 1]],
                                                   [pos[j, 2], pos[j_parent, 2]], zdir='z', c=col, linewidth=3))

            points = ax_in.scatter(*keypoints[i].reshape(17*num_person, 2).T, 10, color=colors_2d, edgecolors='white', zorder=10)
            initialized = True
        else:
            image.set_data(all_frames[i])

            for j, j_parent in zip(index, parents):
                if j_parent == -1:
                    continue

                if len(parents) == 17 and keypoints_metadata['layout_name'] != 'coco':
                    for m in range(num_person):
                        lines[j + 16*m - 1][0].set_data([keypoints[i, m, j, 0], keypoints[i, m, j_parent, 0]],
                                                        [keypoints[i, m, j, 1], keypoints[i, m, j_parent, 1]])

                if com_reconstrcution:
                    for k, pose in enumerate(poses):
                        pos = pose[i]
                        lines_3d[0][j + k*16 - 1][0].set_xdata([pos[j, 0], pos[j_parent, 0]])
                        lines_3d[0][j + k*16 - 1][0].set_ydata([pos[j, 1], pos[j_parent, 1]])
                        lines_3d[0][j + k*16 - 1][0].set_3d_properties([pos[j, 2], pos[j_parent, 2]], zdir='z')
                else:
                    for n, ax in enumerate(ax_3d):
                        pos = poses[n][i]
                        lines_3d[n][j - 1][0].set_xdata([pos[j, 0], pos[j_parent, 0]])
                        lines_3d[n][j - 1][0].set_ydata([pos[j, 1], pos[j_parent, 1]])
                        lines_3d[n][j - 1][0].set_3d_properties([pos[j, 2], pos[j_parent, 2]], zdir='z')

            points.set_offsets(keypoints[i].reshape(17*num_person, 2))

        print('{}/{}      '.format(i, limit), end='\r')

    fig.tight_layout()

    anim = FuncAnimation(fig, update_video, frames=np.arange(0, limit), interval=1000 / fps, repeat=False)
    if output.endswith('.mp4'):
        Writer = writers['ffmpeg']
        writer = Writer(fps=fps, metadata={}, bitrate=bitrate)
        anim.save(output, writer=writer)
    elif output.endswith('.gif'):
        anim.save(output, dpi=80, writer='imagemagick')
    else:
        raise ValueError('Unsupported output format (only .mp4 and .gif are supported)')
    plt.close()