Spaces:
Runtime error
Runtime error
""" | |
https://arxiv.org/abs/1602.00763 | |
""" | |
from __future__ import print_function | |
from numba import jit | |
import os.path | |
import numpy as np | |
from skimage import io | |
from scipy.optimize import linear_sum_assignment | |
import argparse | |
from filterpy.kalman import KalmanFilter | |
def iou(bb_test, bb_gt): | |
""" | |
Computes IUO between two bboxes in the form [x1,y1,x2,y2] | |
""" | |
xx1 = np.maximum(bb_test[0], bb_gt[0]) | |
yy1 = np.maximum(bb_test[1], bb_gt[1]) | |
xx2 = np.minimum(bb_test[2], bb_gt[2]) | |
yy2 = np.minimum(bb_test[3], bb_gt[3]) | |
w = np.maximum(0., xx2 - xx1) | |
h = np.maximum(0., yy2 - yy1) | |
wh = w * h | |
o = wh / ((bb_test[2] - bb_test[0]) * (bb_test[3] - bb_test[1]) | |
+ (bb_gt[2] - bb_gt[0]) * (bb_gt[3] - bb_gt[1]) - wh) | |
return o | |
def convert_bbox_to_z(bbox): | |
""" | |
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form | |
[x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is | |
the aspect ratio | |
""" | |
w = bbox[2] - bbox[0] | |
h = bbox[3] - bbox[1] | |
x = bbox[0] + w / 2. | |
y = bbox[1] + h / 2. | |
s = w * h # scale is just area | |
r = w / float(h) | |
return np.array([x, y, s, r]).reshape((4, 1)) | |
def convert_x_to_bbox(x, score=None): | |
""" | |
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form | |
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right | |
""" | |
w = np.sqrt(x[2] * x[3]) | |
h = x[2] / w | |
if (score == None): | |
return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4)) | |
else: | |
return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score]).reshape((1, 5)) | |
class KalmanBoxTracker(object): | |
""" | |
This class represents the internel state of individual tracked objects observed as bbox. | |
""" | |
count = 0 | |
def __init__(self, bbox): | |
""" | |
Initialises a tracker using initial bounding box. | |
""" | |
# define constant velocity model | |
self.kf = KalmanFilter(dim_x=7, dim_z=4) | |
self.kf.F = np.array( | |
[[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0], | |
[0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]]) | |
self.kf.H = np.array( | |
[[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]]) | |
self.kf.R[2:, 2:] *= 10. | |
self.kf.P[4:, 4:] *= 1000. # give high uncertainty to the unobservable initial velocities | |
self.kf.P *= 10. | |
self.kf.Q[-1, -1] *= 0.01 | |
self.kf.Q[4:, 4:] *= 0.01 | |
self.kf.x[:4] = convert_bbox_to_z(bbox) | |
self.time_since_update = 0 | |
self.id = KalmanBoxTracker.count | |
KalmanBoxTracker.count += 1 | |
self.history = [] | |
self.hits = 0 | |
self.hit_streak = 0 | |
self.age = 0 | |
def update(self, bbox): | |
""" | |
Updates the state vector with observed bbox. | |
""" | |
self.time_since_update = 0 | |
self.history = [] | |
self.hits += 1 | |
self.hit_streak += 1 | |
self.kf.update(convert_bbox_to_z(bbox)) | |
def predict(self): | |
""" | |
Advances the state vector and returns the predicted bounding box estimate. | |
""" | |
if ((self.kf.x[6] + self.kf.x[2]) <= 0): | |
self.kf.x[6] *= 0.0 | |
self.kf.predict() | |
self.age += 1 | |
if (self.time_since_update > 0): | |
self.hit_streak = 0 | |
self.time_since_update += 1 | |
self.history.append(convert_x_to_bbox(self.kf.x)) | |
return self.history[-1] | |
def get_state(self): | |
""" | |
Returns the current bounding box estimate. | |
""" | |
return convert_x_to_bbox(self.kf.x) | |
def associate_detections_to_trackers(detections, trackers, iou_threshold=0.3): | |
""" | |
Assigns detections to tracked object (both represented as bounding boxes) | |
Returns 3 lists of matches, unmatched_detections and unmatched_trackers | |
""" | |
if (len(trackers) == 0): | |
return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.empty((0, 5), dtype=int) | |
iou_matrix = np.zeros((len(detections), len(trackers)), dtype=np.float32) | |
for d, det in enumerate(detections): | |
for t, trk in enumerate(trackers): | |
iou_matrix[d, t] = iou(det, trk) | |
matched_indices = linear_sum_assignment(-iou_matrix) | |
matched_indices = np.asarray(matched_indices) | |
matched_indices = matched_indices.transpose() | |
unmatched_detections = [] | |
for d, det in enumerate(detections): | |
if (d not in matched_indices[:, 0]): | |
unmatched_detections.append(d) | |
unmatched_trackers = [] | |
for t, trk in enumerate(trackers): | |
if (t not in matched_indices[:, 1]): | |
unmatched_trackers.append(t) | |
# filter out matched with low IOU | |
matches = [] | |
for m in matched_indices: | |
if (iou_matrix[m[0], m[1]] < iou_threshold): | |
unmatched_detections.append(m[0]) | |
unmatched_trackers.append(m[1]) | |
else: | |
matches.append(m.reshape(1, 2)) | |
if (len(matches) == 0): | |
matches = np.empty((0, 2), dtype=int) | |
else: | |
matches = np.concatenate(matches, axis=0) | |
return matches, np.array(unmatched_detections), np.array(unmatched_trackers) | |
class Sort(object): | |
def __init__(self, max_age=1, min_hits=3): | |
""" | |
Sets key parameters for SORT | |
""" | |
self.max_age = max_age | |
self.min_hits = min_hits | |
self.trackers = [] | |
self.frame_count = 0 | |
def update(self, dets): | |
""" | |
Params: | |
dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...] | |
Requires: this method must be called once for each frame even with empty detections. | |
Returns the a similar array, where the last column is the object ID. | |
NOTE: The number of objects returned may differ from the number of detections provided. | |
""" | |
self.frame_count += 1 | |
# get predicted locations from existing trackers. | |
trks = np.zeros((len(self.trackers), 5)) | |
to_del = [] | |
ret = [] | |
for t, trk in enumerate(trks): | |
pos = self.trackers[t].predict()[0] | |
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0] | |
if np.any(np.isnan(pos)): | |
to_del.append(t) | |
trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) | |
for t in reversed(to_del): | |
self.trackers.pop(t) | |
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks) | |
# update matched trackers with assigned detections | |
for t, trk in enumerate(self.trackers): | |
if t not in unmatched_trks: | |
d = matched[np.where(matched[:, 1] == t)[0], 0] # d: [n] | |
trk.update(dets[d, :][0]) | |
# create and initialise new trackers for unmatched detections | |
for i in unmatched_dets: | |
trk = KalmanBoxTracker(dets[i, :]) | |
self.trackers.append(trk) | |
i = len(self.trackers) | |
for trk in reversed(self.trackers): | |
d = trk.get_state()[0] | |
if ((trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits)): | |
ret.append(np.concatenate((d, [trk.id + 1])).reshape(1, -1)) # +1 as MOT benchmark requires positive | |
i -= 1 | |
# remove dead tracklet | |
if (trk.time_since_update > self.max_age): | |
self.trackers.pop(i) | |
if (len(ret) > 0): | |
return np.concatenate(ret) | |
return np.empty((0, 5)) | |
def parse_args(): | |
"""Parse input arguments.""" | |
parser = argparse.ArgumentParser(description='SORT demo') | |
parser.add_argument('--display', dest='display', help='Display online tracker output (slow) [False]', | |
action='store_true') | |
args = parser.parse_args() | |
return args | |