import torch import numpy as np def mpjpe(predicted, target): """ Mean per-joint position error (i.e. mean Euclidean distance), often referred to as "Protocol #1" in many papers. """ assert predicted.shape == target.shape return torch.mean(torch.norm(predicted - target, dim=len(target.shape) - 1)) def p_mpjpe(predicted, target): """ Pose error: MPJPE after rigid alignment (scale, rotation, and translation), often referred to as "Protocol #2" in many papers. """ assert predicted.shape == target.shape muX = np.mean(target, axis=1, keepdims=True) muY = np.mean(predicted, axis=1, keepdims=True) X0 = target - muX Y0 = predicted - muY normX = np.sqrt(np.sum(X0 ** 2, axis=(1, 2), keepdims=True)) normY = np.sqrt(np.sum(Y0 ** 2, axis=(1, 2), keepdims=True)) X0 /= normX Y0 /= normY H = np.matmul(X0.transpose(0, 2, 1), Y0) U, s, Vt = np.linalg.svd(H) V = Vt.transpose(0, 2, 1) R = np.matmul(V, U.transpose(0, 2, 1)) # Avoid improper rotations (reflections), i.e. rotations with det(R) = -1 sign_detR = np.sign(np.expand_dims(np.linalg.det(R), axis=1)) V[:, :, -1] *= sign_detR s[:, -1] *= sign_detR.flatten() R = np.matmul(V, U.transpose(0, 2, 1)) # Rotation tr = np.expand_dims(np.sum(s, axis=1, keepdims=True), axis=2) a = tr * normX / normY # Scale t = muX - a * np.matmul(muY, R) # Translation # Perform rigid transformation on the input predicted_aligned = a * np.matmul(predicted, R) + t # Return MPJPE return np.mean(np.linalg.norm(predicted_aligned - target, axis=len(target.shape) - 1)) def euclidean_losses(actual, target): """Calculate the average Euclidean loss for multi-point samples. Each sample must contain `n` points, each with `d` dimensions. For example, in the MPII human pose estimation task n=16 (16 joint locations) and d=2 (locations are 2D). Args: actual (Tensor): Predictions (B x L x D) target (Tensor): Ground truth target (B x L x D) """ assert actual.size() == target.size(), 'input tensors must have the same size' # Calculate Euclidean distances between actual and target locations diff = actual - target dist_sq = diff.pow(2).sum(-1, keepdim=False) dist = dist_sq.sqrt() return dist def pck(actual, expected, threshold=150): dists = euclidean_losses(actual, expected) return (dists < threshold).double().mean().item() def auc(actual, expected): # This range of thresholds mimics `mpii_compute_3d_pck.m`, which is provided as part of the # MPI-INF-3DHP test data release. thresholds = torch.linspace(0, 150, 31).tolist() pck_values = torch.DoubleTensor(len(thresholds)) for i, threshold in enumerate(thresholds): pck_values[i] = pck(actual, expected, threshold=threshold) return pck_values.mean().item()