import numpy as np import torch from tools.utils import wrap from common.quaternion import qort, qinverse def normalize_screen_coordinates(X, w, h): assert X.shape[-1] == 2 # Normalize so that [0, w] is mapped to [-1, 1], while preserving the aspect ratio return X/w*2 - [1, h/w] def image_coordinates(X, w, h): assert X.shape[-1] == 2 # Reverse camera frame normalization return (X + [1, h/w]) * w / 2 def world_to_camera(X, R, t): Rt = wrap(qinverse, R) # Invert rotation return wrap(qort, np.tile(Rt, (*X.shape[:-1], 1)), X - t) # Rotate and translate def camera_to_world(X, R, t): return wrap(qort, np.tile(R, (*X.shape[:-1], 1)), X) + t def project_to_2d(X, camera_params): """ Project 3D points to 2D using the Human3.6M camera projection function. This is a differentiable and batched reimplementation of the original MATLAB script. Arguments: X -- 3D points in *camera space* to transform (N, *, 3) camera_params -- intrinsic parameteres (N, 2+2+3+2=9) """ assert X.shape[-1] == 3 assert len(camera_params.shape) == 2 assert camera_params.shape[-1] == 9 assert X.shape[0] == camera_params.shape[0] while len(camera_params.shape) < len(X.shape): camera_params = camera_params.unsqueeze(1) f = camera_params[..., :2] c = camera_params[..., 2:4] k = camera_params[..., 4:7] p = camera_params[..., 7:] # XX = torch.clamp(X[..., :2] / X[..., 2:], min=-1, max=1) XX = X[..., :2] / X[..., 2:] r2 = torch.sum(XX[..., :2]**2, dim=len(XX.shape)-1, keepdim=True) radial = 1 + torch.sum(k * torch.cat((r2, r2**2, r2**3), dim=len(r2.shape)-1), dim=len(r2.shape)-1, keepdim=True) tan = torch.sum(p*XX, dim=len(XX.shape)-1, keepdim=True) XXX = XX*(radial + tan) + p*r2 return f*XXX + c