Spaces:
Sleeping
Sleeping
Commit
·
f545d97
1
Parent(s):
d860eab
adding all files
Browse files- app.py +59 -0
- label_mapping.pkl +3 -0
- nmf_model.pkl +3 -0
- tfidf_vectorizer.pkl +3 -0
app.py
CHANGED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import pandas as pd
|
4 |
+
import re
|
5 |
+
import nltk
|
6 |
+
from nltk.stem import PorterStemmer
|
7 |
+
from nltk.tokenize import word_tokenize
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
def text_preprocessing(df):
|
13 |
+
"""
|
14 |
+
This function does in-place replacement of data so it won't return anything
|
15 |
+
"""
|
16 |
+
# Convert to lower cases
|
17 |
+
df['Text'] = df['Text'].str.lower()
|
18 |
+
|
19 |
+
# Remove punctuation
|
20 |
+
df['Text'] = df['Text'].apply(lambda doc: re.sub(r'[^\w\s]+', '', doc))
|
21 |
+
|
22 |
+
# Remove stopwords
|
23 |
+
stop_words = nltk.corpus.stopwords.words('english')
|
24 |
+
df['Text'] = df['Text'].apply(lambda doc: ' '.join([word for word in doc.split() if word not in (stop_words)]))
|
25 |
+
|
26 |
+
# Remove extra spaces
|
27 |
+
df['Text'] = df['Text'].apply(lambda doc: re.sub(' +', ' ', doc))
|
28 |
+
|
29 |
+
# Stemming
|
30 |
+
porter_stemmer = PorterStemmer()
|
31 |
+
df['Text'] = df['Text'].apply(lambda doc: [porter_stemmer.stem(word) for word in word_tokenize(doc)])
|
32 |
+
df['Text'] = df['Text'].apply(lambda words: ' '.join(words))
|
33 |
+
|
34 |
+
|
35 |
+
def predict_user_input(paragraph, tfidf, nmf, label_mapping_yp):
|
36 |
+
data = pd.DataFrame({'Text': [paragraph]})
|
37 |
+
text_preprocessing(data)
|
38 |
+
tfidf_transformed = tfidf.transform(data['Text'])
|
39 |
+
nmf_transformed = nmf.transform(tfidf_transformed)
|
40 |
+
y_pred = np.argmax(nmf_transformed, axis=1)
|
41 |
+
y_pred = [label_mapping_yp[y] for y in y_pred]
|
42 |
+
return y_pred[0]
|
43 |
+
|
44 |
+
def process_paragraph(paragraph):
|
45 |
+
tfidf = joblib.load('tfidf_vectorizer.pkl')
|
46 |
+
nmf = joblib.load('nmf_model.pkl')
|
47 |
+
label_mapping_yp = joblib.load('label_mapping.pkl')
|
48 |
+
predicted_class = predict_user_input(paragraph, tfidf, nmf, label_mapping_yp)
|
49 |
+
print(f"The predicted class for the input paragraph is: {predicted_class}")
|
50 |
+
return predicted_class
|
51 |
+
|
52 |
+
def paragraph_processing_app(paragraph):
|
53 |
+
processed_text = process_paragraph(paragraph)
|
54 |
+
return processed_text
|
55 |
+
|
56 |
+
input_text = gr.Textbox(lines=10, label="Enter a article:")
|
57 |
+
output_text = gr.Textbox(label="Category(Out of Business, Tech, Sport, Politics and Entertainment.)")
|
58 |
+
|
59 |
+
gr.Interface(fn=paragraph_processing_app, inputs=input_text, outputs=output_text).launch()
|
label_mapping.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21ac6d446fb291df7406c9a01b4253fb4b934d6957491191bd1d88f788c142c5
|
3 |
+
size 229
|
nmf_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e0100525c10de229db44aa9c12bea3b1db4919f88b8d52222312ef290f5764a
|
3 |
+
size 788577
|
tfidf_vectorizer.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9378646d12b4f73bb1fca002cc27f52429c8a988c3749085f10151f6a70d03e0
|
3 |
+
size 560098
|