Spaces:
Sleeping
Sleeping
File size: 3,611 Bytes
e32d487 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
from sklearn.preprocessing import LabelEncoder
import pandas as pd
import pickle
import gradio as gr
svc=pickle.load(open('svc.pickle','rb'))
def predict_class(cap_shape, cap_surface, cap_color, bruises, odor, gill_attachment,
gill_spacing, gill_size, gill_color, stalk_shape, stalk_root,
stalk_surface_above_ring, stalk_surface_below_ring, stalk_color_above_ring,
stalk_color_below_ring, veil_color, ring_number, ring_type, spore_print_color,
population, habitat):
input_data=[cap_shape, cap_surface, cap_color, bruises, odor, gill_attachment,
gill_spacing, gill_size, gill_color, stalk_shape, stalk_root,
stalk_surface_above_ring, stalk_surface_below_ring, stalk_color_above_ring,
stalk_color_below_ring, veil_color, ring_number, ring_type, spore_print_color,
population, habitat]
encoder=LabelEncoder()
real_df=pd.read_csv('mushrooms.csv')
real_df.drop(['class','veil-type'],axis=1,inplace=True)
encoded_value=[]
features = [ 'cap-shape', 'cap-surface', 'cap-color', 'bruises', 'odor',
'gill-attachment', 'gill-spacing', 'gill-size', 'gill-color',
'stalk-shape', 'stalk-root', 'stalk-surface-above-ring',
'stalk-surface-below-ring', 'stalk-color-above-ring',
'stalk-color-below-ring', 'veil-color', 'ring-number',
'ring-type', 'spore-print-color', 'population', 'habitat']
randomly_selected_values = ['s', 'y', 'g', 'f', 'c', 'a', 'w', 'n', 'b', 't', 'e', 's', 'k', 'o', 'y', 'w', 'o', 'f', 'r', 'y', 'p']
random=pd.DataFrame([input_data],columns=features)
for i in real_df.columns:
encoder.fit_transform(real_df[i])
encoded_value.append(encoder.transform(random[i])[0])
prediction=svc.predict([encoded_value])
class_label = 'poisonous' if prediction == 1 else 'edible'
return class_label
import gradio as gr
input_features = {
'cap-shape': ['x', 'b', 's', 'f', 'k', 'c'],
'cap-surface': ['s', 'y', 'f', 'g'],
'cap-color': ['n', 'y', 'w', 'g', 'e', 'p', 'b', 'u', 'c', 'r'],
'bruises': ['t', 'f'],
'odor': ['p', 'a', 'l', 'n', 'f', 'c', 'y', 's', 'm'],
'gill-attachment': ['f', 'a'],
'gill-spacing': ['c', 'w'],
'gill-size': ['n', 'b'],
'gill-color': ['k', 'n', 'g', 'p', 'w', 'h', 'u', 'e', 'b', 'r', 'y', 'o'],
'stalk-shape': ['e', 't'],
'stalk-root': ['e', 'c', 'b', 'r', '?'],
'stalk-surface-above-ring': ['s', 'f', 'k', 'y'],
'stalk-surface-below-ring': ['s', 'f', 'y', 'k'],
'stalk-color-above-ring': ['w', 'g', 'p', 'n', 'b', 'e', 'o', 'c', 'y'],
'stalk-color-below-ring': ['w', 'p', 'g', 'b', 'n', 'e', 'y', 'o', 'c'],
'veil-color': ['w', 'n', 'o', 'y'],
'ring-number': ['o', 't', 'n'],
'ring-type': ['p', 'e', 'l', 'f', 'n'],
'spore-print-color': ['k', 'n', 'u', 'h', 'w', 'r', 'o', 'y', 'b'],
'population': ['s', 'n', 'a', 'v', 'y', 'c'],
'habitat': ['u', 'g', 'm', 'd', 'p', 'w', 'l']
}
# Convert input features dictionary to a list of dictionaries
print(len(input_features))
# Define the output classes
output_classes = ['p', 'e']
input_components = [gr.Dropdown(choices=values, label=feature) for feature, values in input_features.items()]
# Create Gradio interface
iface = gr.Interface(
fn=predict_class,
inputs=input_components,
outputs="label",
title="Mushroom Classifier",
description="Predict whether a mushroom is poisonous or edible based on its features."
)
iface.launch(inline=False,share=True)
|