Spaces:
Sleeping
Sleeping
Srivastava
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ from sklearn.preprocessing import LabelEncoder
|
|
2 |
import pandas as pd
|
3 |
import pickle
|
4 |
import gradio as gr
|
|
|
|
|
5 |
svc=pickle.load(open('svc.pickle','rb'))
|
6 |
def predict_class(cap_shape, cap_surface, cap_color, bruises, odor, gill_attachment,
|
7 |
gill_spacing, gill_size, gill_color, stalk_shape, stalk_root,
|
@@ -13,19 +15,49 @@ def predict_class(cap_shape, cap_surface, cap_color, bruises, odor, gill_attachm
|
|
13 |
stalk_surface_above_ring, stalk_surface_below_ring, stalk_color_above_ring,
|
14 |
stalk_color_below_ring, veil_color, ring_number, ring_type, spore_print_color,
|
15 |
population, habitat]
|
16 |
-
|
17 |
-
real_df=pd.read_csv('mushrooms.csv')
|
18 |
-
real_df.drop(['class','veil-type'],axis=1,inplace=True)
|
19 |
-
encoded_value=[]
|
20 |
features = [ 'cap-shape', 'cap-surface', 'cap-color', 'bruises', 'odor',
|
21 |
'gill-attachment', 'gill-spacing', 'gill-size', 'gill-color',
|
22 |
'stalk-shape', 'stalk-root', 'stalk-surface-above-ring',
|
23 |
'stalk-surface-below-ring', 'stalk-color-above-ring',
|
24 |
'stalk-color-below-ring', 'veil-color', 'ring-number',
|
25 |
'ring-type', 'spore-print-color', 'population', 'habitat']
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
for i in real_df.columns:
|
|
|
29 |
encoder.fit_transform(real_df[i])
|
30 |
encoded_value.append(encoder.transform(random[i])[0])
|
31 |
|
@@ -38,35 +70,29 @@ def predict_class(cap_shape, cap_surface, cap_color, bruises, odor, gill_attachm
|
|
38 |
|
39 |
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
'spore-print-color': ['k', 'n', 'u', 'h', 'w', 'r', 'o', 'y', 'b'],
|
63 |
-
'population': ['s', 'n', 'a', 'v', 'y', 'c'],
|
64 |
-
'habitat': ['u', 'g', 'm', 'd', 'p', 'w', 'l']
|
65 |
-
}
|
66 |
|
67 |
|
68 |
-
# Convert input features dictionary to a list of dictionaries
|
69 |
-
print(len(input_features))
|
70 |
# Define the output classes
|
71 |
output_classes = ['p', 'e']
|
72 |
|
|
|
2 |
import pandas as pd
|
3 |
import pickle
|
4 |
import gradio as gr
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
svc=pickle.load(open('svc.pickle','rb'))
|
8 |
def predict_class(cap_shape, cap_surface, cap_color, bruises, odor, gill_attachment,
|
9 |
gill_spacing, gill_size, gill_color, stalk_shape, stalk_root,
|
|
|
15 |
stalk_surface_above_ring, stalk_surface_below_ring, stalk_color_above_ring,
|
16 |
stalk_color_below_ring, veil_color, ring_number, ring_type, spore_print_color,
|
17 |
population, habitat]
|
18 |
+
|
|
|
|
|
|
|
19 |
features = [ 'cap-shape', 'cap-surface', 'cap-color', 'bruises', 'odor',
|
20 |
'gill-attachment', 'gill-spacing', 'gill-size', 'gill-color',
|
21 |
'stalk-shape', 'stalk-root', 'stalk-surface-above-ring',
|
22 |
'stalk-surface-below-ring', 'stalk-color-above-ring',
|
23 |
'stalk-color-below-ring', 'veil-color', 'ring-number',
|
24 |
'ring-type', 'spore-print-color', 'population', 'habitat']
|
25 |
+
mushroom_data = {
|
26 |
+
'cap-shape': {'bell': 'b', 'conical': 'c', 'convex': 'x', 'flat': 'f', 'knobbed': 'k', 'sunken': 's'},
|
27 |
+
'cap-surface': {'fibrous': 'f', 'grooves': 'g', 'scaly': 'y', 'smooth': 's'},
|
28 |
+
'cap-color': {'brown': 'n', 'buff': 'b', 'cinnamon': 'c', 'gray': 'g', 'green': 'r', 'pink': 'p', 'purple': 'u', 'red': 'e', 'white': 'w', 'yellow': 'y'},
|
29 |
+
'bruises': {'bruises': 't', 'no': 'f'},
|
30 |
+
'odor': {'almond': 'a', 'anise': 'l', 'creosote': 'c', 'fishy': 'y', 'foul': 'f', 'musty': 'm', 'none': 'n', 'pungent': 'p', 'spicy': 's'},
|
31 |
+
'gill-attachment': {'attached': 'a', 'descending': 'd', 'free': 'f', 'notched': 'n'},
|
32 |
+
'gill-spacing': {'close': 'c', 'crowded': 'w', 'distant': 'd'},
|
33 |
+
'gill-size': {'broad': 'b', 'narrow': 'n'},
|
34 |
+
'gill-color': {'black': 'k', 'brown': 'n', 'buff': 'b', 'chocolate': 'h', 'gray': 'g', 'green': 'r', 'orange': 'o', 'pink': 'p', 'purple': 'u', 'red': 'e', 'white': 'w', 'yellow': 'y'},
|
35 |
+
'stalk-shape': {'enlarging': 'e', 'tapering': 't'},
|
36 |
+
'stalk-root': {'bulbous': 'b', 'club': 'c', 'cup': 'u', 'equal': 'e', 'rhizomorphs': 'z', 'rooted': 'r', 'missing': '?'},
|
37 |
+
'stalk-surface-above-ring': {'fibrous': 'f', 'scaly': 'y', 'silky': 'k', 'smooth': 's'},
|
38 |
+
'stalk-surface-below-ring': {'fibrous': 'f', 'scaly': 'y', 'silky': 'k', 'smooth': 's'},
|
39 |
+
'stalk-color-above-ring': {'brown': 'n', 'buff': 'b', 'cinnamon': 'c', 'gray': 'g', 'orange': 'o', 'pink': 'p', 'red': 'e', 'white': 'w', 'yellow': 'y'},
|
40 |
+
'stalk-color-below-ring': {'brown': 'n', 'buff': 'b', 'cinnamon': 'c', 'gray': 'g', 'orange': 'o', 'pink': 'p', 'red': 'e', 'white': 'w', 'yellow': 'y'},
|
41 |
+
'veil-type': {'partial': 'p', 'universal': 'u'},
|
42 |
+
'veil-color': {'brown': 'n', 'orange': 'o', 'white': 'w', 'yellow': 'y'},
|
43 |
+
'ring-number': {'none': 'n', 'one': 'o', 'two': 't'},
|
44 |
+
'ring-type': {'cobwebby': 'c', 'evanescent': 'e', 'flaring': 'f', 'large': 'l', 'none': 'n', 'pendant': 'p', 'sheathing': 's', 'zone': 'z'},
|
45 |
+
'spore-print-color': {'black': 'k', 'brown': 'n', 'buff': 'b', 'chocolate': 'h', 'green': 'r', 'orange': 'o', 'purple': 'u', 'white': 'w', 'yellow': 'y'},
|
46 |
+
'population': {'abundant': 'a', 'clustered': 'c', 'numerous': 'n', 'scattered': 's', 'several': 'v', 'solitary': 'y'},
|
47 |
+
'habitat': {'grasses': 'g', 'leaves': 'l', 'meadows': 'm', 'paths': 'p', 'urban': 'u', 'waste': 'w', 'woods': 'd'}
|
48 |
+
}
|
49 |
+
|
50 |
+
encoder=LabelEncoder()
|
51 |
+
real_df=pd.read_csv('mushrooms.csv')
|
52 |
+
real_df.drop(['class','veil-type'],axis=1,inplace=True)
|
53 |
+
encoded_value=[]
|
54 |
+
valueforprediction=[]
|
55 |
+
for i in range(21):
|
56 |
+
valueforprediction.append(mushroom_data[features[i]][input_data[i]])
|
57 |
+
|
58 |
+
random=pd.DataFrame([valueforprediction],columns=features)
|
59 |
for i in real_df.columns:
|
60 |
+
print(i,real_df[i].unique())
|
61 |
encoder.fit_transform(real_df[i])
|
62 |
encoded_value.append(encoder.transform(random[i])[0])
|
63 |
|
|
|
70 |
|
71 |
|
72 |
|
73 |
+
input_features = {'cap-shape': ['bell', 'conical', 'convex', 'flat', 'knobbed', 'sunken'],
|
74 |
+
'cap-surface': ['fibrous', 'grooves', 'scaly', 'smooth'],
|
75 |
+
'cap-color': ['brown', 'buff', 'cinnamon', 'gray', 'green', 'pink', 'purple', 'red', 'white', 'yellow'],
|
76 |
+
'bruises': ['bruises', 'no'],
|
77 |
+
'odor': ['almond', 'anise', 'creosote', 'fishy', 'foul', 'musty', 'none', 'pungent', 'spicy'],
|
78 |
+
'gill-attachment': ['attached', 'free'],
|
79 |
+
'gill-spacing': ['close', 'crowded'],
|
80 |
+
'gill-size': ['broad', 'narrow'],
|
81 |
+
'gill-color': ['black', 'brown', 'buff', 'chocolate', 'gray', 'green', 'orange', 'pink', 'purple', 'red', 'white', 'yellow'],
|
82 |
+
'stalk-shape': ['enlarging', 'tapering'],
|
83 |
+
'stalk-root': ['bulbous', 'club', 'equal', 'rooted', 'missing'],
|
84 |
+
'stalk-surface-above-ring': ['fibrous', 'scaly', 'silky', 'smooth'],
|
85 |
+
'stalk-surface-below-ring': ['fibrous', 'scaly', 'silky', 'smooth'],
|
86 |
+
'stalk-color-above-ring': ['brown', 'buff', 'cinnamon', 'gray', 'orange', 'pink', 'red', 'white', 'yellow'],
|
87 |
+
'stalk-color-below-ring': ['brown', 'buff', 'cinnamon', 'gray', 'orange', 'pink', 'red', 'white', 'yellow'],
|
88 |
+
'veil-color': ['brown', 'orange', 'white', 'yellow'],
|
89 |
+
'ring-number': ['none', 'one', 'two'],
|
90 |
+
'ring-type': [ 'evanescent', 'flaring', 'large', 'none', 'pendant'],
|
91 |
+
'spore-print-color': ['black', 'brown', 'buff', 'chocolate', 'green', 'orange', 'purple', 'white', 'yellow'],
|
92 |
+
'population': ['abundant', 'clustered', 'numerous', 'scattered', 'several', 'solitary'],
|
93 |
+
'habitat': ['grasses', 'leaves', 'meadows', 'paths', 'urban', 'waste', 'woods']}
|
|
|
|
|
|
|
|
|
94 |
|
95 |
|
|
|
|
|
96 |
# Define the output classes
|
97 |
output_classes = ['p', 'e']
|
98 |
|