amaralibey commited on
Commit
9ec4f1c
·
verified ·
1 Parent(s): e153caf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +169 -145
app.py CHANGED
@@ -1,154 +1,178 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
 
39
- generator = torch.Generator().manual_seed(seed)
40
 
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
 
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
 
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
 
 
 
 
90
  )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
  )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
-
153
  if __name__ == "__main__":
 
 
 
 
 
 
 
154
  demo.launch()
 
1
+ # ----------------------------------------------------------------------------
2
+ # Copyright (c) 2024 Amar Ali-bey
3
+ #
4
+ # OpenVPRLab: https://github.com/amaralibey/nanoCLIP
5
+ #
6
+ # Licensed under the MIT License. See LICENSE file in the project root.
7
+ # ----------------------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
 
9
 
10
+ from pathlib import Path
11
+ from typing import List, Tuple, Optional
 
 
 
 
 
 
 
12
 
13
+ import torch
14
+ import torch.nn.functional as F
15
+ import faiss
16
+ from transformers import AutoTokenizer
17
+ import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ from src.models import TextEncoder
20
+ from deployment.load_album import AlbumDataset
21
+
22
+ class ImageSearchEngine:
23
+ def __init__(
24
+ self,
25
+ model_name: str = "sentence-transformers/all-MiniLM-L6-v2",
26
+ output_dim: int = 64,
27
+ gallery_folder: str = "photos",
28
+ device: str = 'cpu'
29
+ ):
30
+ if device == 'cuda' and not torch.cuda.is_available():
31
+ print("CUDA is not available. Using CPU instead.")
32
+ device = 'cpu'
33
+ self.device = torch.device(device)
34
+ self.setup_model(model_name, output_dim)
35
+ self.setup_gallery(gallery_folder)
36
+
37
+ def setup_model(self, model_name: str, output_dim: int) -> None:
38
+ """Initialize and load the text encoder model."""
39
+ self.txt_encoder = TextEncoder(
40
+ output_dim=output_dim,
41
+ lang_model=model_name
42
+ ).to(self.device)
43
+
44
+ # Load the pre-trained weights for the text encoder
45
+ #
46
+ weights_path = Path(__file__).parent.resolve() / 'txt_encoder_state_dict.pth'
47
+ # check if the weights file exists
48
+ if not weights_path.exists():
49
+ raise FileNotFoundError(f"Text encoder weights not found: {weights_path}, make sure to run the create_index.py script.")
50
+ weights = torch.load(weights_path, map_location=self.device, weights_only=True)
51
+ self.txt_encoder.load_state_dict(weights)
52
+ self.txt_encoder.eval()
53
+
54
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
55
+
56
+ def setup_gallery(self, gallery_folder: str) -> None:
57
+ """Setup the image gallery and FAISS index."""
58
+ gallery_path = Path(__file__).parent.resolve() / f'gallery/{gallery_folder}'
59
+ # check if the gallery folder exists
60
+ if not gallery_path.exists():
61
+ raise FileNotFoundError(f"Album folder {gallery_path} not found")
62
+ # we use the AlbumDataset class to load the image paths (we won't load the images themselves)
63
+ # this is more efficient than loading the images directly, because Gradio will load them
64
+ # given the paths returned by the search method.
65
+ self.dataset = AlbumDataset(gallery_path, transform=None)
66
+
67
+ # Load the FAISS index
68
+ # the index file should be in the same folder as the gallery
69
+ # and has the same name as the folder being indexed
70
+ index_path = gallery_path.parent / f"{gallery_folder}.faiss"
71
+ self.index = faiss.read_index(index_path.as_posix())
72
+
73
+ @torch.no_grad()
74
+ def encode_query(self, query_text: str) -> torch.Tensor:
75
+ """Encode the text query into embeddings."""
76
+ inputs = self.tokenizer(query_text, truncation=True, return_tensors="pt")
77
+ inputs = inputs['input_ids'].to(self.device)
78
+
79
+ embedding = self.txt_encoder(inputs)
80
+ embedding = F.normalize(embedding, p=2, dim=1)
81
+ return embedding.cpu()
82
+
83
+ def search(self, query_text: str, k: int = 10) -> List[Tuple[str, Optional[str]]]:
84
+ """Search for images matching the query text."""
85
+ if len(query_text) < 3: # avoid searching for very short queries
86
+ return []
87
+
88
+ query_embedding = self.encode_query(query_text)
89
+ dist, indices = self.index.search(query_embedding, k)
90
+ # you can filter results according to a threshold on the distance
91
+ return [(self.dataset.imgs[idx], None) for idx in indices[0]]
92
+
93
+ class GalleryUI:
94
+ def __init__(self, search_engine: ImageSearchEngine):
95
+ self.search_engine = search_engine
96
+ self.css_path = Path(__file__).parent / 'style.css'
97
+
98
+ def load_css(self) -> str:
99
+ """Load CSS styles from file."""
100
+ with open(self.css_path) as f:
101
+ return f.read()
102
+
103
+ def create_interface(self) -> gr.Blocks:
104
+ """Create the Gradio interface."""
105
+ with gr.Blocks(css=self.load_css(), theme=gr.themes.Soft(text_size='lg')) as demo:
106
+ with gr.Column(elem_classes="container"):
107
+ self._create_header()
108
+ self._create_search_section()
109
+ self._create_footer()
110
+
111
+ self._setup_callbacks(demo)
112
+ return demo
113
+
114
+ def _create_header(self) -> None:
115
+ """Create the header section."""
116
+ with gr.Column(elem_classes="header"):
117
+ gr.Markdown("# Gallery Search")
118
+ gr.Markdown("Search through your collection of photos with AI")
119
+
120
+ def _create_search_section(self) -> None:
121
+ """Create the search interface section."""
122
+ with gr.Column():
123
+ self.query_text = gr.Textbox(
124
+ placeholder="Example: Riding my horse",
125
+ label="Search Query",
126
+ elem_classes="search-input",
127
+ autofocus=True,
128
+ container=False
129
  )
130
+
131
+ with gr.Row(visible=False): # this is hidden for now, but you can show it if you want
132
+ self.number_of_results = gr.Dropdown(
133
+ choices=[4,8,12,16,24,30],
134
+ value=30,
135
+ label="Results per page",
136
+ elem_classes="dropdown"
137
+ )
138
+
139
+ self.gallery = gr.Gallery(
140
+ label="Search Results",
141
+ columns=3,
142
+ object_fit="cover",
143
+ elem_classes="gallery",
144
+ container=False,
145
  )
146
+
147
+ def _create_footer(self) -> None:
148
+ """Create the footer section."""
149
+ with gr.Column(elem_classes="footer"):
150
+ gr.Markdown(
151
+ """Created by [Amar Ali-bey](https://amaralibey.github.io) |
152
+ [View on GitHub](https://github.com/amaralibey/nanoCLIP)"""
153
  )
154
+
155
+ def _setup_callbacks(self, demo: gr.Blocks) -> None:
156
+ """Setup the interface callbacks."""
157
+ self.query_text.change(
158
+ self.search_engine.search,
159
+ inputs=[self.query_text, self.number_of_results],
160
+ outputs=self.gallery,
161
+ show_progress='hidden',
162
+ )
163
+
164
+ self.number_of_results.change(
165
+ self.search_engine.search,
166
+ inputs=[self.query_text, self.number_of_results],
167
+ outputs=self.gallery
168
+ )
169
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170
  if __name__ == "__main__":
171
+ search_engine = ImageSearchEngine(
172
+ model_name = "sentence-transformers/all-MiniLM-L6-v2",
173
+ output_dim = 64,
174
+ gallery_folder = "photos",
175
+ )
176
+ ui = GalleryUI(search_engine)
177
+ demo = ui.create_interface()
178
  demo.launch()