File size: 6,969 Bytes
78d359b
 
 
 
 
 
 
071dd3c
a25f677
 
78d359b
a25f677
933c40c
78d359b
 
 
933c40c
a25f677
933c40c
a25f677
933c40c
78d359b
 
a25f677
78d359b
933c40c
 
78d359b
933c40c
78d359b
 
933c40c
78d359b
 
 
 
 
 
 
 
933c40c
78d359b
 
 
 
 
 
a25f677
933c40c
78d359b
a25f677
933c40c
78d359b
a25f677
933c40c
78d359b
 
933c40c
a25f677
78d359b
a25f677
933c40c
78d359b
933c40c
 
78d359b
 
 
 
 
 
 
 
 
 
933c40c
 
78d359b
933c40c
78d359b
933c40c
78d359b
933c40c
78d359b
933c40c
78d359b
933c40c
78d359b
933c40c
a25f677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
933c40c
a25f677
 
933c40c
78d359b
 
a25f677
78d359b
 
933c40c
78d359b
933c40c
a25f677
933c40c
a25f677
933c40c
a25f677
933c40c
a25f677
 
 
 
 
 
 
 
 
 
933c40c
 
78d359b
 
933c40c
a25f677
78d359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a25f677
78d359b
 
 
 
 
 
a25f677
78d359b
933c40c
78d359b
 
 
 
 
 
 
 
 
 
 
a25f677
78d359b
 
a25f677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63d8dec
 
adf5040
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import gradio as gr
from gradio_image_prompter import ImagePrompter
import torch
import numpy as np
from sam2.sam2_image_predictor import SAM2ImagePredictor
from uuid import uuid4
import os
from huggingface_hub import upload_folder, login
from PIL import Image as PILImage
from datasets import Dataset, Features, Array2D, Image
import shutil
import time

MODEL = "facebook/sam2-hiera-large"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
PREDICTOR = SAM2ImagePredictor.from_pretrained(MODEL, device=DEVICE)

DESTINATION_DS = "amaye15/object-segmentation"

# login(os.getenv("TOKEN"))

IMAGE = None
MASKS = None
MASKED_IMAGES = None
INDEX = None


def prompter(prompts):

    image = np.array(prompts["image"])  # Convert the image to a numpy array
    points = prompts["points"]  # Get the points from prompts

    # Perform inference with multimask_output=True
    with torch.inference_mode():
        PREDICTOR.set_image(image)
        input_point = [[point[0], point[1]] for point in points]
        input_label = [1] * len(points)  # Assuming all points are foreground
        masks, _, _ = PREDICTOR.predict(
            point_coords=input_point, point_labels=input_label, multimask_output=True
        )

    # Prepare individual images with separate overlays
    overlay_images = []
    for i, mask in enumerate(masks):
        print(f"Predicted Mask {i+1}:", mask.shape)
        red_mask = np.zeros_like(image)
        red_mask[:, :, 0] = mask.astype(np.uint8) * 255  # Apply the red channel
        red_mask = PILImage.fromarray(red_mask)

        # Convert the original image to a PIL image
        original_image = PILImage.fromarray(image)

        # Blend the original image with the red mask
        blended_image = PILImage.blend(original_image, red_mask, alpha=0.5)

        # Add the blended image to the list
        overlay_images.append(blended_image)

    global IMAGE, MASKS, MASKED_IMAGES
    IMAGE, MASKS = image, masks
    MASKED_IMAGES = [np.array(img) for img in overlay_images]

    return overlay_images[0], overlay_images[1], overlay_images[2], masks


def select_mask(
    selected_mask_index,
    mask1,
    mask2,
    mask3,
):
    masks = [mask1, mask2, mask3]
    global INDEX
    INDEX = selected_mask_index
    return masks[selected_mask_index]


def save_selected_mask(image, mask, output_dir="output"):

    output_dir = os.path.join(os.getcwd(), output_dir)

    os.makedirs(output_dir, exist_ok=True)

    folder_id = str(uuid4())

    folder_path = os.path.join(output_dir, folder_id)

    os.makedirs(folder_path, exist_ok=True)

    data_path = os.path.join(folder_path, "data.parquet")

    data = {
        "image": IMAGE,
        "masked_image": MASKED_IMAGES[INDEX],
        "mask": MASKS[INDEX],
    }

    features = Features(
        {
            "image": Image(),
            "masked_image": Image(),
            "mask": Array2D(
                dtype="int64", shape=(MASKS[INDEX].shape[0], MASKS[INDEX].shape[1])
            ),
        }
    )

    ds = Dataset.from_list([data], features=features)
    ds.to_parquet(data_path)

    upload_folder(
        folder_path=output_dir,
        repo_id=DESTINATION_DS,
        repo_type="dataset",
    )

    shutil.rmtree(folder_path)

    iframe_code = "Success - Check out the 'Results' tab."

    return iframe_code

    # time.sleep(5)

    # # Add a random query parameter to force reload
    # random_param = uuid4()
    # iframe_code = f"""
    # <iframe
    #   src="https://huggingface.co/datasets/{DESTINATION_DS}/embed/viewer/default/train"
    #   frameborder="0"
    #   width="100%"
    #   height="560px"
    # ></iframe>
    # """


# Define the Gradio Blocks app
with gr.Blocks() as demo:

    with gr.Tab("Object Segmentation - Point Prompt"):
        gr.Markdown("# Image Point Collector with Multiple Separate Mask Overlays")
        gr.Markdown(
            "Upload an image, click on it, and get each predicted mask overlaid separately in red on individual images."
        )

        with gr.Row():
            with gr.Column():
                # Input: ImagePrompter
                image_input = ImagePrompter(show_label=False)
                submit_button = gr.Button("Submit")
        with gr.Row():
            with gr.Column():
                # Outputs: Up to 3 overlay images
                image_output_1 = gr.Image(show_label=False)
            with gr.Column():
                image_output_2 = gr.Image(show_label=False)
            with gr.Column():
                image_output_3 = gr.Image(show_label=False)

        # Dropdown for selecting the correct mask
        with gr.Row():
            mask_selector = gr.Radio(
                label="Select the correct mask",
                choices=["Mask 1", "Mask 2", "Mask 3"],
                type="index",
            )
            # selected_mask_output = gr.Image(show_label=False)

        save_button = gr.Button("Save Selected Mask and Image")
        iframe_display = gr.Markdown()

        # Define the action triggered by the submit button
        submit_button.click(
            fn=prompter,
            inputs=image_input,
            outputs=[image_output_1, image_output_2, image_output_3, gr.State()],
            show_progress=True,
        )

        # Define the action triggered by mask selection
        mask_selector.change(
            fn=select_mask,
            inputs=[mask_selector, image_output_1, image_output_2, image_output_3],
            outputs=gr.State(),
        )

        # Define the action triggered by the save button
        save_button.click(
            fn=save_selected_mask,
            inputs=[gr.State(), gr.State()],
            outputs=iframe_display,
            show_progress=True,
        )
    with gr.Tab("Results"):
        with gr.Row():
            gr.HTML(
                f"""
                <iframe
                  src="https://huggingface.co/datasets/{DESTINATION_DS}/embed/viewer/default/train"
                  frameborder="0"
                  width="100%"
                  height="560px"
                ></iframe>
                """
            )
            # with gr.Column():
            #     source = gr.Textbox(label="Source Dataset")
            #     source_display = gr.Markdown()
            #     iframe_display = gr.HTML()

            #     source.change(
            #         save_dataset_name,
            #         inputs=(gr.State("source_dataset"), source),
            #         outputs=(source_display, iframe_display),
            #     )

            # with gr.Column():

            #     destination = gr.Textbox(label="Destination Dataset")
            #     destination_display = gr.Markdown()

            #     destination.change(
            #         save_dataset_name,
            #         inputs=(gr.State("destination_dataset"), destination),
            #         outputs=destination_display,
            #     )

# Launch the Gradio app
demo.launch()