Spaces:
Sleeping
Sleeping
File size: 9,102 Bytes
88cd70c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import gradio as gr
import torch
import os
import numpy as np
import SimpleITK as sitk
from scipy.ndimage import zoom
from resnet_gn import resnet50
import pickle
def load_from_pkl(load_path):
data_input = open(load_path, 'rb')
read_data = pickle.load(data_input)
data_input.close()
return read_data
Image_3D = None
Current_name = None
ALL_message = load_from_pkl(r'./label0601.pkl')
Model_Paht = r'./model_epoch62.pth.tar'
checkpoint = torch.load(Model_Paht,map_location='cpu')
a = 5
classnet = resnet50(
num_classes=1,
sample_size=128,
sample_duration=8)
classnet.load_state_dict(checkpoint['model_dict'])
def resize3D(img, aimsize, order = 3):
"""
:param img: 3D array
:param aimsize: list, one or three elements, like [256], or [256,56,56]
:return:
"""
_shape =img.shape
if len(aimsize)==1:
aimsize = [aimsize[0] for _ in range(3)]
if aimsize[0] is None:
return zoom(img, (1, aimsize[1] / _shape[1], aimsize[2] / _shape[2]),order=order) # resample for cube_size
if aimsize[1] is None:
return zoom(img, (aimsize[0] / _shape[0], 1, aimsize[2] / _shape[2]),order=order) # resample for cube_size
if aimsize[2] is None:
return zoom(img, (aimsize[0] / _shape[0], aimsize[1] / _shape[1], 1),order=order) # resample for cube_size
return zoom(img, (aimsize[0] / _shape[0], aimsize[1] / _shape[1], aimsize[2] / _shape[2]), order=order) # resample for cube_size
def inference():
model = classnet
data = Image_3D
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.eval()
all_loss = 0
length = 0
with torch.no_grad():
data = torch.from_numpy(data)
image = torch.unsqueeze(data, 0)
patch_data = torch.unsqueeze(image, 0).to(device).float() # (N, C_{in}, D_{in}, H_{in}, W_{in})
# Pre : Prediction Result
pre_probs = model(patch_data)
# pre_probs = F.sigmoid(pre_probs)#todo
pre_flat = pre_probs.view(-1)
a = 5
np.round(pre_flat.numpy()[0], decimals=2)
#(1-pre_flat.numpy()[0]).astype(np.float32)
#pre_flat.numpy()[0].astype(np.float32)
p = float(np.round(pre_flat.numpy()[0], decimals=2))
n = float(np.round(1-p, decimals=2))
return {'急性期': n, '亚急性期': p}
#
#
# def image_classifier(inp):
# #return {'cat': 0.3, 'dog': 0.7}
# return inp
#
# def image_read(inp):
# image = sitk.GetArrayFromImage(sitk.ReadImage(inp))
# ss = np.sum(image)
# return str(ss)
#
#
# def upload_file(files):
# file_paths = [file.name for file in files]
# return file_paths
#
# with gr.Blocks() as demo:
# file_output = gr.File()
# upload_button = gr.UploadButton("Click to Upload a File", file_types=["image", "video"], file_count="multiple")
# upload_button.upload(upload_file, upload_button, gr.Code(''))
# demo.launch()
import gradio as gr
import numpy as np
import nibabel as nib
import os
import tempfile
# 创建一个函数,接收3D数据并返回预测结果
def predict_3d(data):
# 在这里编写您的3D数据处理和预测逻辑
# 对于示例目的,这里只返回输入数据的最大值作为预测结果
result = np.max(data)
return result
# 创建一个用于读取和展示NIfTI数据的Gradio接口函数
def interface():
# 创建一个自定义输入组件,用于读取NIfTI数据
input_component = gr.inputs.File(label="Upload NIfTI file")
# 创建一个输出组件,用于展示预测结果
output_component = gr.outputs.Textbox()
# 定义预测函数,接收输入数据并调用predict_3d函数进行预测
def predict(input_file):
# 加载NIfTI数据
# temp_dir = tempfile.mkdtemp()
# temp_file = os.path.join(temp_dir, "temp_file")
# shutil.copyfile(file.name, temp_file)
nifti_data = nib.load(input_file.name)
# 将NIfTI数据转换为NumPy数组
data = np.array(nifti_data.dataobj)
# 在这里进行必要的数据预处理,例如缩放、归一化等
# 调用predict_3d函数进行预测
result = predict_3d(data)
# 将预测结果转换为字符串并返回
return str(result),str(result)
# 创建Gradio接口,将输入组件和输出组件传递给Interface函数
with gr.Box():
gr.Textbox(label="First")
gr.Textbox(label="Last")
iface_1 = gr.Interface(fn=predict, inputs=gr.inputs.File(label="Upload NIfTI file"), outputs=gr.Box)
return iface
def get_Image_reslice(input_file):
'''得到图像 返回随即层'''
global Image_3D
global Current_name
Image_3D = sitk.GetArrayFromImage(sitk.ReadImage(input_file.name))
Current_name = input_file.name.split(os.sep)[-1].split('.')[0].rsplit('_',1)[0]
Image_3D = (np.max(Image_3D)-Image_3D)/(np.max(Image_3D)-np.min(Image_3D))
random_z = np.random.randint(0, Image_3D.shape[0])
image_slice_z = Image_3D[random_z,:,:]
random_y = np.random.randint(0, Image_3D.shape[1])
image_slice_y = Image_3D[:, random_y, :]
random_x = np.random.randint(0, Image_3D.shape[2])
image_slice_x = Image_3D[:, :, random_x]
# return zoom(image_slice_z, (10 / image_slice_z.shape[0], 10 / image_slice_z.shape[1]), order=3) , \
# zoom(image_slice_y, (10 / image_slice_y.shape[0], 10 / image_slice_y.shape[1]), order=3), \
# zoom(image_slice_x, (10 / image_slice_x.shape[0], 10 / image_slice_x.shape[1]), order=3)
return image_slice_z, \
image_slice_y, \
image_slice_x, random_z,random_y,random_x
def change_image_slice_x(slice):
image_slice = Image_3D[:, :, slice-1]
return image_slice
def change_image_slice_y(slice):
image_slice = Image_3D[:, slice-1, :]
return image_slice
def change_image_slice_z(slice):
image_slice = Image_3D[slice-1,:,:]
return image_slice
def get_medical_message():
global Current_name
if Current_name==None:
return '请先加载数据',' '
else:
past = ALL_message[Current_name]['past']
now = ALL_message[Current_name]['now']
return past, now
class App:
def __init__(self):
self.demo = None
self.main()
def main(self):
# get_name = gr.Interface(lambda name: name, inputs="textbox", outputs="textbox")
# prepend_hello = gr.Interface(lambda name: f"Hello {name}!", inputs="textbox", outputs="textbox")
# append_nice = gr.Interface(lambda greeting: f"{greeting} Nice to meet you!",
# inputs="textbox", outputs=gr.Textbox(label="Greeting"))
#iface_1 = gr.Interface(fn=get_Image_reslice, inputs=gr.inputs.File(label="Upload NIfTI file"), outputs=[,gr.Image(shape=(5, 5)),gr.Image(shape=(5, 5))])
with gr.Blocks() as demo:
inp = gr.inputs.File(label="Upload NIfTI file")
btn1 = gr.Button("Upload Data")
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1):
out1 = gr.Image(shape=(10, 10))
slider1 = gr.Slider(1, 128, label='z轴层数', step=1, interactive=True)
with gr.Column(scale=1):
out2 = gr.Image(shape=(10, 10))
slider2 = gr.Slider(1, 256, label='y轴层数', step=1, interactive=True)
with gr.Column(scale=1):
out3 = gr.Image(shape=(10, 10))
slider3 = gr.Slider(1, 128, label='x轴层数', step=1, interactive=True)
btn1.click(get_Image_reslice, inp, [out1, out2, out3,slider1,slider2,slider3])
slider3.change(change_image_slice_x,inputs=slider3,outputs=out3)
slider2.change(change_image_slice_y, inputs=slider2, outputs=out2)
slider1.change(change_image_slice_z, inputs=slider1, outputs=out1)
with gr.Tab("Medical Information"):
with gr.Row():
with gr.Column(scale=1):
btn2 = gr.Button(label="临床信息")
out4 = gr.Textbox(label="患病史")
out6 = gr.Textbox(label="现病史")
with gr.Column(scale=1):
btn3 = gr.Button("分期结果")
out5 = gr.Label(num_top_classes=2,label='分期结果')
btn3.click(inference, inputs=None, outputs=out5)
btn2.click(get_medical_message, inputs=None, outputs=[out4,out6])
#demo = gr.Series(get_name, prepend_hello, append_nice)
demo.launch(share=True)
app = App()
# with gr.Blocks() as demo:
# with gr.Row():
# with gr.Column(scale=1):
# text1 = gr.Textbox()
# text2 = gr.Textbox()
# with gr.Column(scale=4):
# btn1 = gr.Button("Button 1")
# btn2 = gr.Button("Button 2")
# demo.launch()
|