File size: 9,102 Bytes
88cd70c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import gradio as gr
import torch
import os
import numpy as np
import SimpleITK as sitk
from scipy.ndimage import zoom
from  resnet_gn import resnet50
import pickle
def load_from_pkl(load_path):
    data_input = open(load_path, 'rb')
    read_data = pickle.load(data_input)
    data_input.close()
    return read_data

Image_3D = None
Current_name = None
ALL_message = load_from_pkl(r'./label0601.pkl')

Model_Paht = r'./model_epoch62.pth.tar'
checkpoint = torch.load(Model_Paht,map_location='cpu')

a = 5
classnet = resnet50(
                num_classes=1,
                sample_size=128,
                sample_duration=8)
classnet.load_state_dict(checkpoint['model_dict'])


def resize3D(img, aimsize, order = 3):
    """
    :param img: 3D array
    :param aimsize: list, one or three elements, like [256], or [256,56,56]
    :return:
    """
    _shape =img.shape
    if len(aimsize)==1:
        aimsize = [aimsize[0] for _ in range(3)]
    if aimsize[0] is None:
        return zoom(img, (1, aimsize[1] / _shape[1], aimsize[2] / _shape[2]),order=order)  # resample for cube_size
    if aimsize[1] is None:
        return zoom(img, (aimsize[0] / _shape[0], 1, aimsize[2] / _shape[2]),order=order)  # resample for cube_size
    if aimsize[2] is None:
        return zoom(img, (aimsize[0] / _shape[0], aimsize[1] / _shape[1], 1),order=order)  # resample for cube_size
    return zoom(img, (aimsize[0] / _shape[0], aimsize[1] / _shape[1], aimsize[2] / _shape[2]), order=order)  # resample for cube_size

def inference():
    model = classnet
    data = Image_3D

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model.eval()
    all_loss = 0
    length = 0
    with torch.no_grad():
        data = torch.from_numpy(data)
        image = torch.unsqueeze(data, 0)
        patch_data = torch.unsqueeze(image, 0).to(device).float()  # (N, C_{in}, D_{in}, H_{in}, W_{in})

        # Pre : Prediction Result
        pre_probs = model(patch_data)

        # pre_probs = F.sigmoid(pre_probs)#todo
        pre_flat = pre_probs.view(-1)
        a = 5
        np.round(pre_flat.numpy()[0], decimals=2)
        #(1-pre_flat.numpy()[0]).astype(np.float32)
        #pre_flat.numpy()[0].astype(np.float32)
        p = float(np.round(pre_flat.numpy()[0], decimals=2))
        n = float(np.round(1-p, decimals=2))
        return {'急性期': n, '亚急性期': p}

#
#
# def image_classifier(inp):
#     #return {'cat': 0.3, 'dog': 0.7}
#     return inp
#
# def image_read(inp):
#     image = sitk.GetArrayFromImage(sitk.ReadImage(inp))
#     ss = np.sum(image)
#     return str(ss)
#
#
# def upload_file(files):
#     file_paths = [file.name for file in files]
#     return file_paths
#
# with gr.Blocks() as demo:
#     file_output = gr.File()
#     upload_button = gr.UploadButton("Click to Upload a File",  file_types=["image", "video"], file_count="multiple")
#     upload_button.upload(upload_file, upload_button, gr.Code(''))
# demo.launch()

import gradio as gr
import numpy as np
import nibabel as nib
import os
import tempfile
# 创建一个函数,接收3D数据并返回预测结果
def predict_3d(data):
    # 在这里编写您的3D数据处理和预测逻辑
    # 对于示例目的,这里只返回输入数据的最大值作为预测结果
    result = np.max(data)
    return result

# 创建一个用于读取和展示NIfTI数据的Gradio接口函数
def interface():
    # 创建一个自定义输入组件,用于读取NIfTI数据
    input_component = gr.inputs.File(label="Upload NIfTI file")

    # 创建一个输出组件,用于展示预测结果
    output_component = gr.outputs.Textbox()

    # 定义预测函数,接收输入数据并调用predict_3d函数进行预测
    def predict(input_file):
        # 加载NIfTI数据
        # temp_dir = tempfile.mkdtemp()
        # temp_file = os.path.join(temp_dir, "temp_file")
        # shutil.copyfile(file.name, temp_file)
        nifti_data = nib.load(input_file.name)
        # 将NIfTI数据转换为NumPy数组
        data = np.array(nifti_data.dataobj)
        # 在这里进行必要的数据预处理,例如缩放、归一化等
        # 调用predict_3d函数进行预测
        result = predict_3d(data)
        # 将预测结果转换为字符串并返回
        return str(result),str(result)

    # 创建Gradio接口,将输入组件和输出组件传递给Interface函数
    with gr.Box():
        gr.Textbox(label="First")
        gr.Textbox(label="Last")
    iface_1 = gr.Interface(fn=predict, inputs=gr.inputs.File(label="Upload NIfTI file"), outputs=gr.Box)

    return iface


def get_Image_reslice(input_file):
    '''得到图像 返回随即层'''
    global Image_3D
    global Current_name
    Image_3D = sitk.GetArrayFromImage(sitk.ReadImage(input_file.name))
    Current_name = input_file.name.split(os.sep)[-1].split('.')[0].rsplit('_',1)[0]
    Image_3D = (np.max(Image_3D)-Image_3D)/(np.max(Image_3D)-np.min(Image_3D))
    random_z = np.random.randint(0, Image_3D.shape[0])
    image_slice_z = Image_3D[random_z,:,:]

    random_y = np.random.randint(0, Image_3D.shape[1])
    image_slice_y = Image_3D[:, random_y, :]

    random_x = np.random.randint(0, Image_3D.shape[2])
    image_slice_x = Image_3D[:, :, random_x]
    # return  zoom(image_slice_z, (10 / image_slice_z.shape[0], 10 / image_slice_z.shape[1]), order=3) , \
    #         zoom(image_slice_y, (10 / image_slice_y.shape[0], 10 / image_slice_y.shape[1]), order=3), \
    #         zoom(image_slice_x, (10 / image_slice_x.shape[0], 10 / image_slice_x.shape[1]), order=3)
    return image_slice_z, \
           image_slice_y, \
           image_slice_x, random_z,random_y,random_x


def change_image_slice_x(slice):

    image_slice = Image_3D[:, :, slice-1]
    return image_slice

def change_image_slice_y(slice):
    image_slice = Image_3D[:, slice-1, :]
    return image_slice

def change_image_slice_z(slice):
    image_slice = Image_3D[slice-1,:,:]
    return image_slice

def get_medical_message():
    global Current_name
    if Current_name==None:
        return '请先加载数据',' '
    else:
        past = ALL_message[Current_name]['past']
        now = ALL_message[Current_name]['now']
        return past, now


class App:
    def __init__(self):
        self.demo = None
        self.main()
    def main(self):
        # get_name = gr.Interface(lambda name: name, inputs="textbox", outputs="textbox")
        # prepend_hello = gr.Interface(lambda name: f"Hello {name}!", inputs="textbox", outputs="textbox")
        # append_nice = gr.Interface(lambda greeting: f"{greeting} Nice to meet you!",
        #                            inputs="textbox", outputs=gr.Textbox(label="Greeting"))

        #iface_1 = gr.Interface(fn=get_Image_reslice, inputs=gr.inputs.File(label="Upload NIfTI file"), outputs=[,gr.Image(shape=(5, 5)),gr.Image(shape=(5, 5))])

        with gr.Blocks() as demo:
            inp = gr.inputs.File(label="Upload NIfTI file")
            btn1 = gr.Button("Upload Data")
            with gr.Tab("Image"):
                with gr.Row():
                    with gr.Column(scale=1):
                        out1 = gr.Image(shape=(10, 10))
                        slider1 = gr.Slider(1, 128, label='z轴层数', step=1, interactive=True)
                    with gr.Column(scale=1):
                        out2 = gr.Image(shape=(10, 10))
                        slider2 = gr.Slider(1, 256, label='y轴层数', step=1, interactive=True)
                    with gr.Column(scale=1):
                        out3 = gr.Image(shape=(10, 10))
                        slider3 = gr.Slider(1, 128, label='x轴层数', step=1, interactive=True)
                btn1.click(get_Image_reslice, inp, [out1, out2, out3,slider1,slider2,slider3])
                slider3.change(change_image_slice_x,inputs=slider3,outputs=out3)
                slider2.change(change_image_slice_y, inputs=slider2, outputs=out2)
                slider1.change(change_image_slice_z, inputs=slider1, outputs=out1)


            with gr.Tab("Medical Information"):
                with gr.Row():
                    with gr.Column(scale=1):
                        btn2 = gr.Button(label="临床信息")
                        out4 = gr.Textbox(label="患病史")
                        out6 = gr.Textbox(label="现病史")

                    with gr.Column(scale=1):
                        btn3 = gr.Button("分期结果")
                        out5 = gr.Label(num_top_classes=2,label='分期结果')

                btn3.click(inference, inputs=None, outputs=out5)
                btn2.click(get_medical_message, inputs=None, outputs=[out4,out6])
                #demo = gr.Series(get_name, prepend_hello, append_nice)

        demo.launch(share=True)
app = App()
    # with gr.Blocks() as demo:
    #     with gr.Row():
    #         with gr.Column(scale=1):
    #             text1 = gr.Textbox()
    #             text2 = gr.Textbox()
    #         with gr.Column(scale=4):
    #             btn1 = gr.Button("Button 1")
    #             btn2 = gr.Button("Button 2")
    # demo.launch()