File size: 22,287 Bytes
88cd70c
 
 
 
 
 
 
5c4b9bd
 
 
 
29b7c6b
6d40932
 
 
51aea90
88cd70c
 
 
 
 
 
5c4b9bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51aea90
88cd70c
 
 
bbae99f
 
5c4b9bd
 
 
 
 
bbae99f
5c4b9bd
 
bbae99f
5c4b9bd
 
 
bbae99f
51aea90
88cd70c
5c4b9bd
88cd70c
 
 
51aea90
88cd70c
 
 
 
 
51aea90
 
88cd70c
 
51aea90
88cd70c
51aea90
88cd70c
51aea90
 
 
 
88cd70c
5c4b9bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88cd70c
51aea90
5c4b9bd
88cd70c
5c4b9bd
 
 
88cd70c
 
5c4b9bd
d9a1752
5c4b9bd
d9a1752
5c4b9bd
c4a5709
5c4b9bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9a1752
a8013bd
88cd70c
6d0dd24
88cd70c
51aea90
88cd70c
 
 
 
 
51aea90
722f094
51aea90
722f094
51aea90
 
 
722f094
51aea90
 
88cd70c
51aea90
88cd70c
 
 
 
 
 
 
 
 
 
51aea90
 
88cd70c
 
51aea90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88cd70c
51aea90
 
8e6e33b
 
 
 
88cd70c
 
51aea90
88cd70c
51aea90
8e6e33b
 
 
 
 
88cd70c
 
51aea90
88cd70c
51aea90
8e6e33b
 
 
51aea90
8e6e33b
88cd70c
 
51aea90
 
88cd70c
 
 
 
51aea90
 
b02ccbc
 
 
 
 
88cd70c
51aea90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c4b9bd
51aea90
 
 
 
 
 
 
5c4b9bd
 
51aea90
 
 
5c4b9bd
 
 
51aea90
 
5c4b9bd
51aea90
88cd70c
 
 
 
51aea90
88cd70c
 
 
 
 
 
51aea90
88cd70c
 
743b1a3
51aea90
 
 
 
 
 
 
 
 
 
 
 
 
88cd70c
 
 
 
 
 
 
 
 
 
 
743b1a3
88cd70c
 
 
51aea90
88cd70c
 
 
 
51aea90
 
88cd70c
51aea90
88cd70c
 
51aea90
 
 
88cd70c
51aea90
 
743b1a3
 
 
51aea90
 
 
6d0dd24
5c4b9bd
 
2860a44
 
 
 
 
 
5c4b9bd
 
2860a44
 
 
6d0dd24
 
51aea90
 
88cd70c
51aea90
5c4b9bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import gradio as gr
import torch
import os
import numpy as np
import SimpleITK as sitk
from scipy.ndimage import zoom
import pickle
from model.Vision_Transformer_with_mask import vit_base_patch16_224,Attention,CrossAttention,Attention_ori
from model.CoordAttention import *
from typing import Tuple, Type
from torch import Tensor, nn
from xgboost import XGBClassifier
from sklearn.ensemble import AdaBoostClassifier
import umap


def load_from_pkl(load_path):
    data_input = open(load_path, 'rb')
    read_data = pickle.load(data_input)
    data_input.close()
    return read_data

class MLP_att_out(nn.Module):

    def __init__(self, input_dim, inter_dim=None, output_dim=None, activation="relu", drop=0.0):
        super().__init__()
        self.input_dim = input_dim
        self.inter_dim = inter_dim
        self.output_dim = output_dim
        if inter_dim is None: self.inter_dim=input_dim
        if output_dim is None: self.output_dim=input_dim

        self.linear1 = nn.Linear(self.input_dim, self.inter_dim)
        self.activation = self._get_activation_fn(activation)
        self.dropout3 = nn.Dropout(drop)
        self.linear2 = nn.Linear(self.inter_dim, self.output_dim)
        self.dropout4 = nn.Dropout(drop)
        self.norm3 = nn.LayerNorm(self.output_dim)

    def forward(self, x):
        x = self.linear2(self.dropout3(self.activation(self.linear1(x))))
        x = x + self.dropout4(x)
        x = self.norm3(x)
        return x

    def _get_activation_fn(self, activation):
        """Return an activation function given a string"""
        if activation == "relu":
            return F.relu
        if activation == "gelu":
            return F.gelu
        if activation == "glu":
            return F.glu
        raise RuntimeError(F"activation should be relu/gelu, not {activation}.")

class MLPBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        mlp_dim: int,
        act: Type[nn.Module] = nn.GELU,
    ) -> None:
        super().__init__()
        self.lin1 = nn.Linear(embedding_dim, mlp_dim)
        self.lin2 = nn.Linear(mlp_dim, embedding_dim)
        self.act = act()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.lin2(self.act(self.lin1(x)))
class FusionAttentionBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        num_heads: int,
        mlp_dim: int = 2048,
        activation: Type[nn.Module] = nn.ReLU,
    ) -> None:
        """
        A transformer block with four layers: (1) self-attention of sparse
        inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
        block on sparse inputs, and (4) cross attention of dense inputs to sparse
        inputs.

        Arguments:
          embedding_dim (int): the channel dimension of the embeddings
          num_heads (int): the number of heads in the attention layers
          mlp_dim (int): the hidden dimension of the mlp block
          activation (nn.Module): the activation of the mlp block
        """
        super().__init__()
        self.self_attn = Attention_ori(embedding_dim, num_heads)
        self.norm1 = nn.LayerNorm(embedding_dim)
        self.cross_attn_mask_to_image = CrossAttention(dim=embedding_dim, num_heads=num_heads)
        self.norm2 = nn.LayerNorm(embedding_dim)

        self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
        self.norm3 = nn.LayerNorm(embedding_dim)

        self.norm4 = nn.LayerNorm(embedding_dim)
        self.cross_attn_image_to_mask = CrossAttention(dim=embedding_dim, num_heads=num_heads)


    def forward(self, img_emb: Tensor, mask_emb: Tensor, atten_mask: Tensor) -> Tuple[ Tensor]:
        # Self attention block #最开始的时候 queries=query_pe
        #queries: Tensor, keys: Tensor
        queries = mask_emb
        attn_out = self.self_attn(queries)  #小图
        queries = attn_out
        #queries = queries + attn_out
        queries = self.norm1(queries)

        # Cross attention block, mask attending to image embedding
        q = queries #1,5,256
        k = img_emb  # v是值,因此用keys?
        input_x = torch.cat((q, k), dim=1)  # 2 50 768
        attn_out = self.cross_attn_mask_to_image(input_x) #TODO 要不要mask呢 交叉的时候 先不用试试
        queries = queries + attn_out
        queries = self.norm2(queries)

        # MLP block
        mlp_out = self.mlp(queries)
        queries = queries + mlp_out
        queries = self.norm3(queries)

        # Cross attention block, image embedding attending to tokens
        q = img_emb
        k = queries
        input_x = torch.cat((q, k), dim=1)
        attn_out = self.cross_attn_image_to_mask(input_x)
        img_emb = img_emb + attn_out
        img_emb = self.norm4(img_emb)

        return img_emb

class my_model7(nn.Module):
    '''不用mask的版本
    concate 部分 加了nor 加 attention
    attention 用不一样的方法
    '''
    def __init__(self, pretrained=False,num_classes=3,in_chans=1,img_size=224, **kwargs):
        super().__init__()
        self.backboon1 = vit_base_patch16_224(pretrained=False,in_chans=in_chans, as_backbone=True,img_size=img_size)
        if pretrained:
            pre_train_model = timm.create_model('vit_base_patch16_224', pretrained=True, in_chans=in_chans, num_classes=3)
            self.backboon1 = load_weights(self.backboon1, pre_train_model.state_dict())
        #self.backboon2 = vit_base_patch32_224(pretrained=False,as_backbone=True) #TODO 同一个网络共享参数/不共享参数/patch不同网络
        self.self_atten_img = Attention_ori(dim= self.backboon1.embed_dim, num_heads=self.backboon1.num_heads)
        #self.self_atten_mask = Attention(dim=self.backboon1.embed_dim, num_heads=self.backboon1.num_heads)
        self.self_atten_mask = Attention_ori(dim=self.backboon1.embed_dim, num_heads=self.backboon1.num_heads)
        self.cross_atten = FusionAttentionBlock(embedding_dim=self.backboon1.embed_dim, num_heads=self.backboon1.num_heads)
        #self.external_attention = ExternalAttention(d_model=2304,S=8)
        self.mlp = MLP_att_out(input_dim=self.backboon1.embed_dim * 3, output_dim=self.backboon1.embed_dim)
        self.attention = CoordAtt(1,1,1)
        self.norm1 = nn.LayerNorm(self.backboon1.embed_dim)
        self.norm2 = nn.LayerNorm(self.backboon1.embed_dim)
        self.norm3 = nn.LayerNorm(self.backboon1.embed_dim)
        self.avgpool = nn.AdaptiveAvgPool1d(1)
        self.head = nn.Linear(self.backboon1.embed_dim*3, num_classes) if num_classes > 0 else nn.Identity()
        #self.head = nn.Linear(196, num_classes) if num_classes > 0 else nn.Identity()
    def forward(self, img, mask):

        x1 = self.backboon1(torch.cat((img, torch.zeros_like(img)), dim=1))  #TODO 是否用同一模型 还是不同 中间是否融合多尺度
        x2 = self.backboon1(torch.cat((img*mask, torch.zeros_like(img)), dim=1)) #输出经过了归一化层 #小图
        #自注意力+残差
        x2_atten_mask = self.backboon1.atten_mask
        x1_atten = self.self_atten_img(x1)
        x2_atten = self.self_atten_mask(x2)
        x1_out = self.norm1((x1 + x1_atten))
        x2_out = self.norm2((x2 + x2_atten))
        #交叉注意力
        corss_out = self.norm3(self.cross_atten(x1, x2, x2_atten_mask))
        #得到输出特征
        out = torch.concat((x1_out, corss_out, x2_out), dim=2).permute(0, 2, 1)#12  2304 196
        out = self.attention(out) #12  2304 196
        #out_ = out.permute(0, 2, 1)
        #out = self.mlp(out)  # mlp #特征融合 2 196 768
        # out = self.norm1(out) #这个好像不用 好像可以删掉
        out = self.avgpool(out)  # B C 1
        out = torch.flatten(out, 1)
        out = self.head(out)

        return out



Image_3D = None
Current_name = None

ALL_message = load_from_pkl('./label0601.pkl')
ALL_message2 = load_from_pkl('./all_data_label.pkl')
a = ALL_message2['train']
a.update(ALL_message2['val'])
a.update(ALL_message2['test'])
ALL_message2 = a

LC_model_Paht = './train_ADA_1.pkl'
LC_model = load_from_pkl(LC_model_Paht)['model'][0]

TF_model_Paht = './tf_model.pkl'
TF_model = load_from_pkl(TF_model_Paht)['model']
DR_model = load_from_pkl(TF_model_Paht)['dr']

Model_Paht = './model_epoch120.pth.tar'
checkpoint = torch.load(Model_Paht, map_location='cpu')

classnet = my_model7(pretrained=False,num_classes=3,in_chans=1, img_size=224)
classnet.load_state_dict(checkpoint['model_dict'])


def resize3D(img, aimsize, order=3):
    """
    :param img: 3D array
    :param aimsize: list, one or three elements, like [256], or [256,56,56]
    :return:
    """
    _shape = img.shape
    if len(aimsize) == 1:
        aimsize = [aimsize[0] for _ in range(3)]
    if aimsize[0] is None:
        return zoom(img, (1, aimsize[1] / _shape[1], aimsize[2] / _shape[2]), order=order)  # resample for cube_size
    if aimsize[1] is None:
        return zoom(img, (aimsize[0] / _shape[0], 1, aimsize[2] / _shape[2]), order=order)  # resample for cube_size
    if aimsize[2] is None:
        return zoom(img, (aimsize[0] / _shape[0], aimsize[1] / _shape[1], 1), order=order)  # resample for cube_size
    return zoom(img, (aimsize[0] / _shape[0], aimsize[1] / _shape[1], aimsize[2] / _shape[2]),
                order=order)  # resample for cube_size


def get_lc():
    global Current_name
    lc_min = np.array([17,1,0,1,1,1,1,1 , 1 , 1])
    lc_max = np.array([96 ,2, 3 ,2, 2,2 , 2 ,2 ,2 ,4])
    lc_key = ['age', 'sex', 'time', 'postpartum', 'traumatism', 'diabetes', 'high_blood_pressure', 'cerebral_infarction', 'postoperation']

    lc_all = [ALL_message2[Current_name][ii] for ii in lc_key]
    site_ = Current_name.split('_',1)[-1]
    if site_ == 'A_L': lc_all.append(1)
    elif site_ == 'A_R': lc_all.append(2)
    elif site_ == 'B_L': lc_all.append(3)
    elif site_ == 'B_R': lc_all.append(4)
    else: pass
    lc_all = (np.array(lc_all)-lc_min)/(lc_max-lc_min+ 1e-12)
    a = 5
    return lc_all
def inference():
    global Image_small_3D
    global ROI_small_3D
    model = classnet
    data_3d = Image_small_3D
    lc_data = get_lc()
    lc_data = np.expand_dims(lc_data, axis=0)
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model.eval()

    try:
        #影像模型
        with torch.no_grad():
            all_probs = np.empty((0, 3))
            for ii in range(0, data_3d.shape[1]):
                data = torch.from_numpy(data_3d[:,ii,:])
                roi = torch.from_numpy(ROI_small_3D[:,ii,:].astype(np.int8))
                image = torch.unsqueeze(data, 0)
                roi = torch.unsqueeze(torch.unsqueeze(roi, 0),0).to(device).float()
                patch_data = torch.unsqueeze(image, 0).to(device).float()  # (N, C_{in}, D_{in}, H_{in}, W_{in})

                # Pre : Prediction Result
                pre_probs = model(patch_data,roi)
                pre_probs = torch.nn.functional.softmax(pre_probs, dim=1)
                all_probs = np.concatenate((all_probs, pre_probs.cpu().numpy()), axis=0)
            dl_prob = np.mean(all_probs, axis=0)
        dl_prob = np.expand_dims(dl_prob, axis=0)
        lc_prob = LC_model.predict_proba(lc_data)
        feature = DR_model.transform(np.concatenate([dl_prob, lc_prob], axis=1))
        final_p = TF_model.predict_proba(feature)
        final_p = np.round(final_p[0], decimals=2)
        return {'急性期': final_p[0], '亚急性期': final_p[1], '慢性期': final_p[2]}
    except:
        return ' '





def get_Image_reslice(input_file):
    '''得到图像 返回随即层'''
    global Image_3D
    global Current_name
    global Input_File
    if isinstance(input_file, str):
        input_file = input_file
    else:
        input_file = input_file.name
    Input_File = input_file
    print(input_file)
    Image_3D = sitk.GetArrayFromImage(sitk.ReadImage(input_file))
    Current_name = input_file.split(os.sep)[-1].split('.')[0].rsplit('_', 1)[0]
    Image_3D = (np.max(Image_3D) - Image_3D) / (np.max(Image_3D) - np.min(Image_3D))
    random_z = np.random.randint(0, Image_3D.shape[0])
    image_slice_z = Image_3D[random_z, :, :]

    random_y = np.random.randint(0, Image_3D.shape[1])
    image_slice_y = Image_3D[:, random_y, :]

    random_x = np.random.randint(0, Image_3D.shape[2])
    image_slice_x = Image_3D[:, :, random_x]
    # return  zoom(image_slice_z, (10 / image_slice_z.shape[0], 10 / image_slice_z.shape[1]), order=3) , \
    #         zoom(image_slice_y, (10 / image_slice_y.shape[0], 10 / image_slice_y.shape[1]), order=3), \
    #         zoom(image_slice_x, (10 / image_slice_x.shape[0], 10 / image_slice_x.shape[1]), order=3)
    return image_slice_z, \
        image_slice_y, \
        image_slice_x, random_z, random_y, random_x, '影像数据加载成功'


def get_ROI(input_file):
    '''得到图像 返回随即层'''
    global ROI_3D
    if isinstance(input_file, str):
        input_file = input_file
    else:
        input_file = input_file.name

    Image_3D = sitk.GetArrayFromImage(sitk.ReadImage(input_file))
    ROI_3D = Image_3D
    unique_elements = np.unique(ROI_3D)
    a = 5
    if np.where(unique_elements>1)[0]:
        return '这个数据没有经过二值化'
    else:
        return '感兴趣区域加载成功'


def change_image_slice_x(slice):
    image_slice = Image_3D[:, :, slice - 1]
    cut_thre = np.percentile(image_slice, 99.9)  # 直方图99.9%右侧值不要
    image_slice[image_slice >= cut_thre] = cut_thre
    image_slice = (((np.max(image_slice) -image_slice)/(np.max(image_slice) - np.min(image_slice)))*255).astype(np.int16)
    a = 5
    return image_slice


def change_image_slice_y(slice):
    image_slice = Image_3D[:, slice - 1, :]
    cut_thre = np.percentile(image_slice, 99.9)  # 直方图99.9%右侧值不要
    image_slice[image_slice >= cut_thre] = cut_thre
    image_slice = (((np.max(image_slice) - image_slice) / (np.max(image_slice) - np.min(image_slice))) * 255).astype(
        np.int16)

    return image_slice


def change_image_slice_z(slice):
    image_slice = Image_3D[slice - 1, :, :]
    cut_thre = np.percentile(image_slice, 99.9)  # 直方图99.9%右侧值不要
    image_slice[image_slice >= cut_thre] = cut_thre
    image_slice = (((np.max(image_slice) - image_slice) / (np.max(image_slice) - np.min(image_slice))) * 255).astype(np.int16)

    return image_slice
def get_medical_message():
    global Current_name
    if Current_name == None:
        return '请先加载数据', ' '
    else:
        past = ALL_message[Current_name]['past']
        now = ALL_message[Current_name]['now']
        return past, now


def clear_all():
    global Image_3D
    global Current_name
    Current_name = None
    Image_3D = None

    return np.ones((10, 10)), np.ones((10, 10)), np.ones((10, 10)), '', '', ' ',"尚未进行预处理 请先预处理再按“分期结果”按钮","尚未加载影像数据","尚未加载感兴趣区域"

def get_box(mask):
    """
    :param mask:  array,输入金标准图像
    :return:
    """
    # 得到boxx坐标
    # 计算得到bbox,形式为[dim0min, dim0max, dim1min, dim1max, dim2min, dim2max]
    indexx = np.where(mask > 0.)  # 返回坐标,几维就是几组坐标,坐标纵向看
    dim0min, dim0max, dim1min, dim1max, dim2min, dim2max = [np.min(indexx[0]), np.max(indexx[0]),
                                                            np.min(indexx[1]), np.max(indexx[1]),
                                                            np.min(indexx[2]), np.max(indexx[2])]
    bbox = [dim0min, dim0max, dim1min, dim1max, dim2min, dim2max]
    return bbox

def arry_crop_3D(img,mask,ex_pix):
        '''
        得到小图,并外扩
        :param img array 3D
        :param mask array
        :param ex_pix: list [a,b,c] 向两侧各自外扩多少 维度顺序与输入一致
        :param z_waikuo:z轴是否外扩,默认第一维  务必提前确认 !!
        '''
        if len(ex_pix)==1:
            ex_pix=[ex_pix[0] for _ in range(3)]
        elif len(ex_pix) == 2:
            print('如果z轴不外扩,第一维请输入0')
            sys.exit()
        [dim0min, dim0max, dim1min, dim1max, dim2min, dim2max] = get_box(mask)

        #判断能否外扩
        dim0,dim1,dim2 = img.shape

        dim1_l_index = np.clip(dim1min-ex_pix[1],0 ,dim1) #dim1外扩后左边的坐标,若触碰边界,则尽量外扩至边界
        dim1_r_index = np.clip(dim1max + ex_pix[1], 0, dim1)
        dim2_l_index = np.clip(dim2min - ex_pix[2], 0, dim2)
        dim2_r_index = np.clip(dim2max + ex_pix[2], 0, dim2)

        fina_img = img[:, dim1_l_index:dim1_r_index+1, dim2_l_index:dim2_r_index+1]
        fina_mask = mask[:, dim1_l_index:dim1_r_index+1, dim2_l_index:dim2_r_index+1]

        if ex_pix[0]:
            dim0_l_index = np.clip(dim0min - ex_pix[0], 0, dim0)
            dim0_r_index = np.clip(dim0max + ex_pix[0], 0, dim0)
            fina_img = fina_img[dim0_l_index:dim0_r_index+1, :, :]
            fina_mask = fina_mask[dim0_l_index:dim0_r_index+1, :, :]
        else: #不外扩
            print('dim0 不外扩')
            dim0_l_index = dim0min
            dim0_r_index = dim0max
            fina_img = fina_img[dim0_l_index:dim0_r_index+1, :, :]
            fina_mask = fina_mask[dim0_l_index:dim0_r_index+1, :, :]
        return fina_img, fina_mask

def data_pretreatment():
    global Image_3D
    global ROI_3D
    global ROI_small_3D
    global Image_small_3D
    global Current_name
    global Input_File
    if Image_3D.all() ==None:
        return '没有数据'
    else:
        roi = ROI_3D
        # waikuo = [4, 4, 4]
        # fina_img, fina_mask = arry_crop_3D(Image_3D,roi,waikuo)

        cut_thre = np.percentile(fina_img, 99.9)  # 直方图99.9%右侧值不要
        fina_img[fina_img >= cut_thre] = cut_thre
        z, y, x = fina_img.shape
        fina_img = resize3D(fina_img, [224,y,224], order=3)
        fina_roi = resize3D(roi, [224, y, 224], order=3)
        fina_img = (np.max(fina_img)-fina_img)/(np.max(fina_img)-np.min(fina_img))
        Image_small_3D = fina_img
        ROI_small_3D = fina_roi
        return '预处理结束'
class App:
    def __init__(self):
        self.demo = None
        self.main()

    def main(self):
        # get_name = gr.Interface(lambda name: name, inputs="textbox", outputs="textbox")
        # prepend_hello = gr.Interface(lambda name: f"Hello {name}!", inputs="textbox", outputs="textbox")
        # append_nice = gr.Interface(lambda greeting: f"{greeting} Nice to meet you!",
        #                            inputs="textbox", outputs=gr.Textbox(label="Greeting"))

        # iface_1 = gr.Interface(fn=get_Image_reslice, inputs=gr.inputs.File(label="Upload NIfTI file"), outputs=[,gr.Image(shape=(5, 5)),gr.Image(shape=(5, 5))])

        with gr.Blocks() as demo:
            with gr.Row():
                with gr.Column(scale=1):
                    inp = gr.inputs.File(label="Upload MRI file")
                    inp2 = gr.inputs.File(label="Upload ROI file")
                with gr.Column(scale=1):
                    out8 = gr.Textbox(placeholder="尚未加载影像数据")
                    out9 = gr.Textbox(placeholder="尚未加载感兴趣区域")



            with gr.Row():
                btn1 = gr.Button("Upload MRI")
                btn5 = gr.Button("Upload ROI")
                clear = gr.Button(" Clear All")
            with gr.Tab("Image"):
                with gr.Row():
                    with gr.Column(scale=1):
                        out1 = gr.Image(shape=(10, 10))
                        slider1 = gr.Slider(1, 128, label='z轴层数', step=1, interactive=True)
                    with gr.Column(scale=1):
                        out2 = gr.Image(shape=(10, 10))
                        slider2 = gr.Slider(1, 256, label='y轴层数', step=1, interactive=True)
                    with gr.Column(scale=1):
                        out3 = gr.Image(shape=(10, 10))
                        slider3 = gr.Slider(1, 128, label='x轴层数', step=1, interactive=True)

            with gr.Tab("Medical Information"):
                with gr.Row():
                    with gr.Column(scale=1):
                        btn2 = gr.Button(value="临床信息")
                        out4 = gr.Textbox(label="患病史")
                        out6 = gr.Textbox(label="现病史")

                    with gr.Column(scale=1):
                        btn4 = gr.Button("预处理")
                        out7 = gr.Textbox(placeholder="尚未进行预处理 请先预处理再按“分期结果”按钮", )
                        btn3 = gr.Button("分期结果")
                        out5 = gr.Label(num_top_classes=2, label='分期结果')

                btn3.click(inference, inputs=None, outputs=out5)
                btn4.click(data_pretreatment, inputs=None, outputs=out7)
                btn2.click(get_medical_message, inputs=None, outputs=[out4, out6])
                # demo = gr.Series(get_name, prepend_hello, append_nice)

            btn1.click(get_Image_reslice, inp, [out1, out2, out3, slider1, slider2, slider3,out8])
            btn5.click(get_ROI, inputs=inp2, outputs=out9)
            slider3.change(change_image_slice_x, inputs=slider3, outputs=out3)
            slider2.change(change_image_slice_y, inputs=slider2, outputs=out2)
            slider1.change(change_image_slice_z, inputs=slider1, outputs=out1)
            clear.click(clear_all, None, [out1, out2, out3, out4, out6, out5, out7,out8,out9], queue=True)

            gr.Markdown('''# Examples''')
            gr.Examples(
                examples=[["./2239561_B_R_MRI.nii.gz"],
                          ["./2239561_B_R_MRI.nii.gz"]],
                inputs=inp,
                outputs=[out1, out2, out3, slider1, slider2, slider3,out8],
                fn=get_Image_reslice,
                cache_examples=True,
            )
            gr.Examples(
                examples=[["./2239561_B_R_ROI.nii.gz"],
                          ["./2239561_B_R_ROI.nii.gz"]],
                inputs=inp2,
                outputs=out9,
                fn=get_ROI,
                cache_examples=True,
            )
        demo.queue(concurrency_count=6)
        demo.launch(share=False)


app = App()