File size: 11,592 Bytes
a6116c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import math
from functools import partial

__all__ = [
    'ResNet', 'resnet10', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
    'resnet152', 'resnet200'
]

class FilterResponseNormNd(nn.Module):

    def __init__(self, ndim, num_features, eps=1e-6,
                 learnable_eps=False):
        """
        Input Variables:
        ----------------
            ndim: An integer indicating the number of dimensions of the expected input tensor.
            num_features: An integer indicating the number of input feature dimensions.
            eps: A scalar constant or learnable variable.
            learnable_eps: A bool value indicating whether the eps is learnable.
        """
        assert ndim in [3, 4, 5], \
            'FilterResponseNorm only supports 3d, 4d or 5d inputs.'
        super(FilterResponseNormNd, self).__init__()
        shape = (1, num_features) + (1,) * (ndim - 2)
        self.eps = nn.Parameter(torch.ones(*shape) * eps)
        if not learnable_eps:
            self.eps.requires_grad_(False)
        self.gamma = nn.Parameter(torch.Tensor(*shape))
        self.beta = nn.Parameter(torch.Tensor(*shape))
        self.tau = nn.Parameter(torch.Tensor(*shape))
        self.reset_parameters()

    def forward(self, x):
        avg_dims = tuple(range(2, x.dim())) # (2, 3)
        nu2 = torch.pow(x, 2).mean(dim=avg_dims, keepdim=True)
        x = x * torch.rsqrt(nu2 + torch.abs(self.eps))
        return torch.max(self.gamma * x + self.beta, self.tau)

    def reset_parameters(self):
        nn.init.ones_(self.gamma)
        nn.init.zeros_(self.beta)
        nn.init.zeros_(self.tau)

def conv3x3x3(in_planes, out_planes, stride=1):
    # 3x3x3 convolution with padding
    return nn.Conv3d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=1,
        bias=False)


def downsample_basic_block(x, planes, stride):
    out = F.avg_pool3d(x, kernel_size=1, stride=stride)
    zero_pads = torch.Tensor(
        out.size(0), planes - out.size(1), out.size(2), out.size(3),
        out.size(4)).zero_()
    if isinstance(out.data, torch.cuda.FloatTensor):
        zero_pads = zero_pads.cuda()

    out = Variable(torch.cat([out.data, zero_pads], dim=1))

    return out


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3x3(inplanes, planes, stride)
        self.gn1 = nn.GroupNorm(32,planes)
        #self.bn1 = nn.BatchNorm3d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3x3(planes, planes)
        #self.bn2 = nn.BatchNorm3d(planes)
        self.gn2 = nn.GroupNorm(32,planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        #out = self.bn1(out)
        out = self.gn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        #out = self.bn2(out)
        out = self.gn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=1, bias=False)
        #self.bn1 = nn.BatchNorm3d(planes)
        self.gn1 = nn.GroupNorm(32,planes)
        self.conv2 = nn.Conv3d(
            planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        #self.bn2 = nn.BatchNorm3d(planes)
        self.gn2 = nn.GroupNorm(32,planes)
        self.conv3 = nn.Conv3d(planes, planes * 4, kernel_size=1, bias=False)
        #self.bn3 = nn.BatchNorm3d(planes * 4)
        self.gn3 = nn.GroupNorm(32,planes*4)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        #out = self.bn1(out)
        out = self.gn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        #out = self.bn2(out)
        out = self.gn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        #out = self.bn3(out)
        out = self.gn3(out)
        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

class MLP(nn.Module):
    def __init__(
        self,
        input_dim: int,
        hidden_dim: int,
        output_dim: int,
        num_layers: int,
        sigmoid_output: bool = False,
    ) -> None:
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(
            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
        )
        self.sigmoid_output = sigmoid_output

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        if self.sigmoid_output:
            x = F.sigmoid(x)
        return x

class ResNet(nn.Module):

    def __init__(self,
                 block,
                 layers,
                 sample_size,
                 sample_duration,
                 shortcut_type='B',
                 num_classes=400):
        self.num_classes = num_classes
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv3d(
            1,
            64,
            kernel_size=7,
            stride=(1, 2, 2),
            padding=(3, 3, 3),
            bias=False)
        #self.bn1 = nn.BatchNorm3d(64)
        self.gn1 = nn.GroupNorm(32,64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], shortcut_type)
        self.layer2 = self._make_layer(
            block, 128, layers[1], shortcut_type, stride=2)
        self.layer3 = self._make_layer(
            block, 256, layers[2], shortcut_type, stride=2)
        self.layer4 = self._make_layer(
            block, 512, layers[3], shortcut_type, stride=2)
        last_duration = int(math.ceil(sample_duration / 16))
        last_size = int(math.ceil(sample_size / 32))
        self.avgpool = nn.AvgPool3d(
            (last_duration, last_size, last_size), stride=1)
        # self.avgpool = nn.AvgPool3d(
        #     (4, 2, 2), stride=1)
        #self.fc = nn.Linear(81920, num_classes)
        self.classfily = MLP(81920, 256, self.num_classes, 2, sigmoid_output=False)

        # for m in self.modules():
        #     if isinstance(m, nn.Conv3d):
        #         m.weight = nn.init.kaiming_normal(m.weight, mode='fan_out')
        #     elif isinstance(m, nn.BatchNorm3d):
        #         m.weight.data.fill_(1)
        #         m.bias.data.zero_()
        for m in self.modules():
            if isinstance(m, nn.Conv3d):
                m.weight = nn.init.kaiming_normal(m.weight, mode='fan_out')
            elif isinstance(m, nn.GroupNorm):
                m.weight.data.fill_(1)
                m.bias.data.zero_()


    def _make_layer(self, block, planes, blocks, shortcut_type, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            if shortcut_type == 'A':
                downsample = partial(
                    downsample_basic_block,
                    planes=planes * block.expansion,
                    stride=stride)
            else:
                downsample = nn.Sequential(
                    nn.Conv3d(
                        self.inplanes,
                        planes * block.expansion,
                        kernel_size=1,
                        stride=stride,
                        bias=False), nn.GroupNorm(32,planes * block.expansion))
                # downsample = nn.Sequential(
                #     nn.Conv3d(
                #         self.inplanes,
                #         planes * block.expansion,
                #         kernel_size=1,
                #         stride=stride,
                #         bias=False), nn.BatchNorm3d(planes * block.expansion))


        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)


    def forward(self, x):
        x = self.conv1(x)
        #x = self.bn1(x)
        x = self.gn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)

        x = x.view(x.size(0), -1)
        #x = self.fc(x)
        self.feature = x
        x = self.classfily(x)
        if self.num_classes==1:
            x = F.sigmoid(x)
        return x


# def initialize_weights(self):
#         # print(self.modules())
#
#     for m in self.modules():
#         if isinstance(m, nn.Linear):
#                 # print(m.weight.data.type())
#                 # input()
#                 # m.weight.data.fill_(1.0)
#             nn.init.kaiming_normal_(m.weight,a=0, mode='fan_in', nonlinearity='relu')
#             print(m.weight)

def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv2d') != -1:
        nn.init.xavier_normal_(m.weight.data)
        nn.init.constant_(m.bias.data, 0.0)
    elif classname.find('Linear') != -1:
        nn.init.xavier_normal_(m.weight)
        nn.init.constant_(m.bias, 0.0)

def get_fine_tuning_parameters(model, ft_begin_index):
    if ft_begin_index == 0:
        return model.parameters()

    ft_module_names = []
    for i in range(ft_begin_index, 5):
        ft_module_names.append('layer{}'.format(i))
    ft_module_names.append('fc')

    parameters = []
    for k, v in model.named_parameters():
        for ft_module in ft_module_names:
            if ft_module in k:
                parameters.append({'params': v})
                break
        else:
            parameters.append({'params': v, 'lr': 0.0})

    return parameters


def resnet10(**kwargs):
    """Constructs a ResNet-18 model.
    """
    model = ResNet(BasicBlock, [1, 1, 1, 1], **kwargs)
    return model


def resnet18(**kwargs):
    """Constructs a ResNet-18 model.
    """
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
    return model


def resnet34(**kwargs):
    """Constructs a ResNet-34 model.
    """
    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
    return model


def resnet50(**kwargs):
    """Constructs a ResNet-50 model.
    """
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
    #model.apply(weights_init)
    return model


def resnet101(**kwargs):
    """Constructs a ResNet-101 model.
    """
    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
    # model.apply(weights_init)
    return model


def resnet152(**kwargs):
    """Constructs a ResNet-101 model.
    """
    model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
    return model


def resnet200(**kwargs):
    """Constructs a ResNet-101 model.
    """
    model = ResNet(Bottleneck, [3, 24, 36, 3], **kwargs)
    # model.apply(weights_init)
    return model