Spaces:
Sleeping
Sleeping
File size: 7,756 Bytes
88cd70c d9a1752 88cd70c d9a1752 88cd70c d9a1752 88cd70c 6d0dd24 88cd70c 722f094 88cd70c e265f59 88cd70c b02ccbc d9a1752 88cd70c 743b1a3 88cd70c 743b1a3 88cd70c 743b1a3 55989a6 743b1a3 6d0dd24 743b1a3 c264484 6d0dd24 b3d0c37 88cd70c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
import torch
import os
import numpy as np
import SimpleITK as sitk
from scipy.ndimage import zoom
from resnet_gn import resnet50
import pickle
def load_from_pkl(load_path):
data_input = open(load_path, 'rb')
read_data = pickle.load(data_input)
data_input.close()
return read_data
Image_3D = None
Current_name = None
ALL_message = load_from_pkl(r'./label0601.pkl')
Model_Paht = r'./model_epoch62.pth.tar'
checkpoint = torch.load(Model_Paht,map_location='cpu')
classnet = resnet50(
num_classes=1,
sample_size=128,
sample_duration=8)
classnet.load_state_dict(checkpoint['model_dict'])
def resize3D(img, aimsize, order = 3):
"""
:param img: 3D array
:param aimsize: list, one or three elements, like [256], or [256,56,56]
:return:
"""
_shape =img.shape
if len(aimsize)==1:
aimsize = [aimsize[0] for _ in range(3)]
if aimsize[0] is None:
return zoom(img, (1, aimsize[1] / _shape[1], aimsize[2] / _shape[2]),order=order) # resample for cube_size
if aimsize[1] is None:
return zoom(img, (aimsize[0] / _shape[0], 1, aimsize[2] / _shape[2]),order=order) # resample for cube_size
if aimsize[2] is None:
return zoom(img, (aimsize[0] / _shape[0], aimsize[1] / _shape[1], 1),order=order) # resample for cube_size
return zoom(img, (aimsize[0] / _shape[0], aimsize[1] / _shape[1], aimsize[2] / _shape[2]), order=order) # resample for cube_size
def inference():
model = classnet
data = Image_3D
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.eval()
all_loss = 0
length = 0
try:
with torch.no_grad():
data = torch.from_numpy(data)
image = torch.unsqueeze(data, 0)
patch_data = torch.unsqueeze(image, 0).to(device).float() # (N, C_{in}, D_{in}, H_{in}, W_{in})
# Pre : Prediction Result
pre_probs = model(patch_data)
# pre_probs = F.sigmoid(pre_probs)#todo
pre_flat = pre_probs.view(-1)
np.round(pre_flat.numpy()[0], decimals=2)
#(1-pre_flat.numpy()[0]).astype(np.float32)
#pre_flat.numpy()[0].astype(np.float32)
p = float(np.round(pre_flat.numpy()[0], decimals=2))
n = float(np.round(1-p, decimals=2))
return {'急性期': n, '亚急性期': p}
except:
return {'': ''}
import gradio as gr
import numpy as np
import nibabel as nib
import os
import tempfile
def get_Image_reslice(input_file):
'''得到图像 返回随即层'''
global Image_3D
global Current_name
if isinstance(input_file, str):
input_file=input_file
else:
input_file=input_file.name
Image_3D = sitk.GetArrayFromImage(sitk.ReadImage(input_file))
Current_name = input_file.split(os.sep)[-1].split('.')[0].rsplit('_',1)[0]
Image_3D = (np.max(Image_3D)-Image_3D)/(np.max(Image_3D)-np.min(Image_3D))
random_z = np.random.randint(0, Image_3D.shape[0])
image_slice_z = Image_3D[random_z,:,:]
random_y = np.random.randint(0, Image_3D.shape[1])
image_slice_y = Image_3D[:, random_y, :]
random_x = np.random.randint(0, Image_3D.shape[2])
image_slice_x = Image_3D[:, :, random_x]
print(random_x)
# return zoom(image_slice_z, (10 / image_slice_z.shape[0], 10 / image_slice_z.shape[1]), order=3) , \
# zoom(image_slice_y, (10 / image_slice_y.shape[0], 10 / image_slice_y.shape[1]), order=3), \
# zoom(image_slice_x, (10 / image_slice_x.shape[0], 10 / image_slice_x.shape[1]), order=3)
return image_slice_z, \
image_slice_y, \
image_slice_x, random_z,random_y,random_x
def change_image_slice_x(slice):
image_slice = Image_3D[:, :, slice-1]
return image_slice
def change_image_slice_y(slice):
image_slice = Image_3D[:, slice-1, :]
return image_slice
def change_image_slice_z(slice):
image_slice = Image_3D[slice-1,:,:]
return image_slice
def get_medical_message():
global Current_name
if Current_name==None:
return '请先加载数据',' '
else:
past = ALL_message[Current_name]['past']
now = ALL_message[Current_name]['now']
return past, now
def clear_all():
global Image_3D
global Current_name
Current_name = None
Image_3D = None
return np.ones((10,10)),np.ones((10,10)),np.ones((10,10)),'','',{'': ''}
class App:
def __init__(self):
self.demo = None
self.main()
def main(self):
# get_name = gr.Interface(lambda name: name, inputs="textbox", outputs="textbox")
# prepend_hello = gr.Interface(lambda name: f"Hello {name}!", inputs="textbox", outputs="textbox")
# append_nice = gr.Interface(lambda greeting: f"{greeting} Nice to meet you!",
# inputs="textbox", outputs=gr.Textbox(label="Greeting"))
#iface_1 = gr.Interface(fn=get_Image_reslice, inputs=gr.inputs.File(label="Upload NIfTI file"), outputs=[,gr.Image(shape=(5, 5)),gr.Image(shape=(5, 5))])
with gr.Blocks() as demo:
inp = gr.inputs.File(label="Upload NIfTI file")
with gr.Row():
btn1 = gr.Button("Upload Data")
clear = gr.Button("Clear")
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1):
out1 = gr.Image(shape=(10, 10))
slider1 = gr.Slider(1, 128, label='z轴层数', step=1, interactive=True)
with gr.Column(scale=1):
out2 = gr.Image(shape=(10, 10))
slider2 = gr.Slider(1, 256, label='y轴层数', step=1, interactive=True)
with gr.Column(scale=1):
out3 = gr.Image(shape=(10, 10))
slider3 = gr.Slider(1, 128, label='x轴层数', step=1, interactive=True)
with gr.Tab("Medical Information"):
with gr.Row():
with gr.Column(scale=1):
btn2 = gr.Button(label="临床信息")
out4 = gr.Textbox(label="患病史")
out6 = gr.Textbox(label="现病史")
with gr.Column(scale=1):
btn3 = gr.Button("分期结果")
out5 = gr.Label(num_top_classes=2,label='分期结果')
btn3.click(inference, inputs=None, outputs=out5)
btn2.click(get_medical_message, inputs=None, outputs=[out4,out6])
#demo = gr.Series(get_name, prepend_hello, append_nice)
btn1.click(get_Image_reslice, inp, [out1, out2, out3, slider1, slider2, slider3])
slider3.change(change_image_slice_x, inputs=slider3, outputs=out3)
slider2.change(change_image_slice_y, inputs=slider2, outputs=out2)
slider1.change(change_image_slice_z, inputs=slider1, outputs=out1)
clear.click(clear_all, None, [out1, out2, out3, out4, out6, out5], queue=True)
gr.Markdown("Examples")
gr.Examples(
#examples=r'F:\WorkSpacing\XS_data\FenQi\chuli_data\ALL\358small_exp4_cut_128_256_128\1093978_A_L_MRI.nii.gz',
examples=[[os.path.join(os.path.dirname(__file__), "4171551_B_L_MRI.nii.gz")],
[os.path.join(os.path.dirname(__file__), "4153597_B_L_MRI.nii.gz")]],
inputs = inp,
outputs = [out1, out2, out3,slider1,slider2,slider3],
fn=get_Image_reslice,
cache_examples=True,
)
demo.launch()
app = App()
|