File size: 3,890 Bytes
b4d6f1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
""" PyTorch selectable adaptive pooling
Adaptive pooling with the ability to select the type of pooling from:
    * 'avg' - Average pooling
    * 'max' - Max pooling
    * 'avgmax' - Sum of average and max pooling re-scaled by 0.5
    * 'avgmaxc' - Concatenation of average and max pooling along feature dim, doubles feature dim

Both a functional and a nn.Module version of the pooling is provided.

Hacked together by / Copyright 2020 Ross Wightman
"""
import torch
import torch.nn as nn
import torch.nn.functional as F


def adaptive_pool_feat_mult(pool_type='avg'):
    if pool_type == 'catavgmax':
        return 2
    else:
        return 1


def adaptive_avgmax_pool2d(x, output_size=1):
    x_avg = F.adaptive_avg_pool2d(x, output_size)
    x_max = F.adaptive_max_pool2d(x, output_size)
    return 0.5 * (x_avg + x_max)


def adaptive_catavgmax_pool2d(x, output_size=1):
    x_avg = F.adaptive_avg_pool2d(x, output_size)
    x_max = F.adaptive_max_pool2d(x, output_size)
    return torch.cat((x_avg, x_max), 1)


def select_adaptive_pool2d(x, pool_type='avg', output_size=1):
    """Selectable global pooling function with dynamic input kernel size
    """
    if pool_type == 'avg':
        x = F.adaptive_avg_pool2d(x, output_size)
    elif pool_type == 'avgmax':
        x = adaptive_avgmax_pool2d(x, output_size)
    elif pool_type == 'catavgmax':
        x = adaptive_catavgmax_pool2d(x, output_size)
    elif pool_type == 'max':
        x = F.adaptive_max_pool2d(x, output_size)
    else:
        assert False, 'Invalid pool type: %s' % pool_type
    return x


class FastAdaptiveAvgPool2d(nn.Module):
    def __init__(self, flatten=False):
        super(FastAdaptiveAvgPool2d, self).__init__()
        self.flatten = flatten

    def forward(self, x):
        return x.mean((2, 3), keepdim=not self.flatten)


class AdaptiveAvgMaxPool2d(nn.Module):
    def __init__(self, output_size=1):
        super(AdaptiveAvgMaxPool2d, self).__init__()
        self.output_size = output_size

    def forward(self, x):
        return adaptive_avgmax_pool2d(x, self.output_size)


class AdaptiveCatAvgMaxPool2d(nn.Module):
    def __init__(self, output_size=1):
        super(AdaptiveCatAvgMaxPool2d, self).__init__()
        self.output_size = output_size

    def forward(self, x):
        return adaptive_catavgmax_pool2d(x, self.output_size)


class SelectAdaptivePool2d(nn.Module):
    """Selectable global pooling layer with dynamic input kernel size
    """
    def __init__(self, output_size=1, pool_type='fast', flatten=False):
        super(SelectAdaptivePool2d, self).__init__()
        self.pool_type = pool_type or ''  # convert other falsy values to empty string for consistent TS typing
        self.flatten = nn.Flatten(1) if flatten else nn.Identity()
        if pool_type == '':
            self.pool = nn.Identity()  # pass through
        elif pool_type == 'fast':
            assert output_size == 1
            self.pool = FastAdaptiveAvgPool2d(flatten)
            self.flatten = nn.Identity()
        elif pool_type == 'avg':
            self.pool = nn.AdaptiveAvgPool2d(output_size)
        elif pool_type == 'avgmax':
            self.pool = AdaptiveAvgMaxPool2d(output_size)
        elif pool_type == 'catavgmax':
            self.pool = AdaptiveCatAvgMaxPool2d(output_size)
        elif pool_type == 'max':
            self.pool = nn.AdaptiveMaxPool2d(output_size)
        else:
            assert False, 'Invalid pool type: %s' % pool_type

    def is_identity(self):
        return not self.pool_type

    def forward(self, x):
        x = self.pool(x)
        x = self.flatten(x)
        return x

    def feat_mult(self):
        return adaptive_pool_feat_mult(self.pool_type)

    def __repr__(self):
        return self.__class__.__name__ + ' (' \
               + 'pool_type=' + self.pool_type \
               + ', flatten=' + str(self.flatten) + ')'