Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import os | |
import numpy as np | |
import SimpleITK as sitk | |
from scipy.ndimage import zoom | |
import pickle | |
from model.Vision_Transformer_with_mask import vit_base_patch16_224,Attention,CrossAttention,Attention_ori | |
from model.CoordAttention import * | |
from typing import Tuple, Type | |
from torch import Tensor, nn | |
#import tempfile | |
def load_from_pkl(load_path): | |
data_input = open(load_path, 'rb') | |
read_data = pickle.load(data_input) | |
data_input.close() | |
return read_data | |
class MLP_att_out(nn.Module): | |
def __init__(self, input_dim, inter_dim=None, output_dim=None, activation="relu", drop=0.0): | |
super().__init__() | |
self.input_dim = input_dim | |
self.inter_dim = inter_dim | |
self.output_dim = output_dim | |
if inter_dim is None: self.inter_dim=input_dim | |
if output_dim is None: self.output_dim=input_dim | |
self.linear1 = nn.Linear(self.input_dim, self.inter_dim) | |
self.activation = self._get_activation_fn(activation) | |
self.dropout3 = nn.Dropout(drop) | |
self.linear2 = nn.Linear(self.inter_dim, self.output_dim) | |
self.dropout4 = nn.Dropout(drop) | |
self.norm3 = nn.LayerNorm(self.output_dim) | |
def forward(self, x): | |
x = self.linear2(self.dropout3(self.activation(self.linear1(x)))) | |
x = x + self.dropout4(x) | |
x = self.norm3(x) | |
return x | |
def _get_activation_fn(self, activation): | |
"""Return an activation function given a string""" | |
if activation == "relu": | |
return F.relu | |
if activation == "gelu": | |
return F.gelu | |
if activation == "glu": | |
return F.glu | |
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") | |
class MLPBlock(nn.Module): | |
def __init__( | |
self, | |
embedding_dim: int, | |
mlp_dim: int, | |
act: Type[nn.Module] = nn.GELU, | |
) -> None: | |
super().__init__() | |
self.lin1 = nn.Linear(embedding_dim, mlp_dim) | |
self.lin2 = nn.Linear(mlp_dim, embedding_dim) | |
self.act = act() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.lin2(self.act(self.lin1(x))) | |
class FusionAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
embedding_dim: int, | |
num_heads: int, | |
mlp_dim: int = 2048, | |
activation: Type[nn.Module] = nn.ReLU, | |
) -> None: | |
""" | |
A transformer block with four layers: (1) self-attention of sparse | |
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp | |
block on sparse inputs, and (4) cross attention of dense inputs to sparse | |
inputs. | |
Arguments: | |
embedding_dim (int): the channel dimension of the embeddings | |
num_heads (int): the number of heads in the attention layers | |
mlp_dim (int): the hidden dimension of the mlp block | |
activation (nn.Module): the activation of the mlp block | |
""" | |
super().__init__() | |
self.self_attn = Attention_ori(embedding_dim, num_heads) | |
self.norm1 = nn.LayerNorm(embedding_dim) | |
self.cross_attn_mask_to_image = CrossAttention(dim=embedding_dim, num_heads=num_heads) | |
self.norm2 = nn.LayerNorm(embedding_dim) | |
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation) | |
self.norm3 = nn.LayerNorm(embedding_dim) | |
self.norm4 = nn.LayerNorm(embedding_dim) | |
self.cross_attn_image_to_mask = CrossAttention(dim=embedding_dim, num_heads=num_heads) | |
def forward(self, img_emb: Tensor, mask_emb: Tensor, atten_mask: Tensor) -> Tuple[ Tensor]: | |
# Self attention block #最开始的时候 queries=query_pe | |
#queries: Tensor, keys: Tensor | |
queries = mask_emb | |
attn_out = self.self_attn(queries) #小图 | |
queries = attn_out | |
#queries = queries + attn_out | |
queries = self.norm1(queries) | |
# Cross attention block, mask attending to image embedding | |
q = queries #1,5,256 | |
k = img_emb # v是值,因此用keys? | |
input_x = torch.cat((q, k), dim=1) # 2 50 768 | |
attn_out = self.cross_attn_mask_to_image(input_x) #TODO 要不要mask呢 交叉的时候 先不用试试 | |
queries = queries + attn_out | |
queries = self.norm2(queries) | |
# MLP block | |
mlp_out = self.mlp(queries) | |
queries = queries + mlp_out | |
queries = self.norm3(queries) | |
# Cross attention block, image embedding attending to tokens | |
q = img_emb | |
k = queries | |
input_x = torch.cat((q, k), dim=1) | |
attn_out = self.cross_attn_image_to_mask(input_x) | |
img_emb = img_emb + attn_out | |
img_emb = self.norm4(img_emb) | |
return img_emb | |
class my_model7(nn.Module): | |
'''不用mask的版本 | |
concate 部分 加了nor 加 attention | |
attention 用不一样的方法 | |
''' | |
def __init__(self, pretrained=False,num_classes=3,in_chans=1,img_size=224, **kwargs): | |
super().__init__() | |
self.backboon1 = vit_base_patch16_224(pretrained=False,in_chans=in_chans, as_backbone=True,img_size=img_size) | |
if pretrained: | |
pre_train_model = timm.create_model('vit_base_patch16_224', pretrained=True, in_chans=in_chans, num_classes=3) | |
self.backboon1 = load_weights(self.backboon1, pre_train_model.state_dict()) | |
#self.backboon2 = vit_base_patch32_224(pretrained=False,as_backbone=True) #TODO 同一个网络共享参数/不共享参数/patch不同网络 | |
self.self_atten_img = Attention_ori(dim= self.backboon1.embed_dim, num_heads=self.backboon1.num_heads) | |
#self.self_atten_mask = Attention(dim=self.backboon1.embed_dim, num_heads=self.backboon1.num_heads) | |
self.self_atten_mask = Attention_ori(dim=self.backboon1.embed_dim, num_heads=self.backboon1.num_heads) | |
self.cross_atten = FusionAttentionBlock(embedding_dim=self.backboon1.embed_dim, num_heads=self.backboon1.num_heads) | |
#self.external_attention = ExternalAttention(d_model=2304,S=8) | |
self.mlp = MLP_att_out(input_dim=self.backboon1.embed_dim * 3, output_dim=self.backboon1.embed_dim) | |
self.attention = CoordAtt(1,1,1) | |
self.norm1 = nn.LayerNorm(self.backboon1.embed_dim) | |
self.norm2 = nn.LayerNorm(self.backboon1.embed_dim) | |
self.norm3 = nn.LayerNorm(self.backboon1.embed_dim) | |
self.avgpool = nn.AdaptiveAvgPool1d(1) | |
self.head = nn.Linear(self.backboon1.embed_dim*3, num_classes) if num_classes > 0 else nn.Identity() | |
#self.head = nn.Linear(196, num_classes) if num_classes > 0 else nn.Identity() | |
def forward(self, img, mask): | |
x1 = self.backboon1(torch.cat((img, torch.zeros_like(img)), dim=1)) #TODO 是否用同一模型 还是不同 中间是否融合多尺度 | |
x2 = self.backboon1(torch.cat((img*mask, torch.zeros_like(img)), dim=1)) #输出经过了归一化层 #小图 | |
#自注意力+残差 | |
x2_atten_mask = self.backboon1.atten_mask | |
x1_atten = self.self_atten_img(x1) | |
x2_atten = self.self_atten_mask(x2) | |
x1_out = self.norm1((x1 + x1_atten)) | |
x2_out = self.norm2((x2 + x2_atten)) | |
#交叉注意力 | |
corss_out = self.norm3(self.cross_atten(x1, x2, x2_atten_mask)) | |
#得到输出特征 | |
out = torch.concat((x1_out, corss_out, x2_out), dim=2).permute(0, 2, 1)#12 2304 196 | |
out = self.attention(out) #12 2304 196 | |
#out_ = out.permute(0, 2, 1) | |
#out = self.mlp(out) # mlp #特征融合 2 196 768 | |
# out = self.norm1(out) #这个好像不用 好像可以删掉 | |
out = self.avgpool(out) # B C 1 | |
out = torch.flatten(out, 1) | |
out = self.head(out) | |
return out | |
Image_3D = None | |
Current_name = None | |
ALL_message = load_from_pkl('./label0601.pkl') | |
ALL_message2 = load_from_pkl('./all_data_label.pkl') | |
a = ALL_message2['train'] | |
a.update(ALL_message2['val']) | |
a.update(ALL_message2['test']) | |
ALL_message2 = a | |
LC_model_Paht = './train_ADA_1.pkl' | |
LC_model = load_from_pkl(LC_model_Paht)['model'][0] | |
TF_model_Paht = './tf_model.pkl' | |
TF_model = load_from_pkl(TF_model_Paht)['model'] | |
DR_model = load_from_pkl(TF_model_Paht)['dr'] | |
Model_Paht = './model_epoch120.pth.tar' | |
checkpoint = torch.load(Model_Paht, map_location='cpu') | |
classnet = my_model7(pretrained=False,num_classes=3,in_chans=1, img_size=224) | |
classnet.load_state_dict(checkpoint['model_dict']) | |
def resize3D(img, aimsize, order=3): | |
""" | |
:param img: 3D array | |
:param aimsize: list, one or three elements, like [256], or [256,56,56] | |
:return: | |
""" | |
_shape = img.shape | |
if len(aimsize) == 1: | |
aimsize = [aimsize[0] for _ in range(3)] | |
if aimsize[0] is None: | |
return zoom(img, (1, aimsize[1] / _shape[1], aimsize[2] / _shape[2]), order=order) # resample for cube_size | |
if aimsize[1] is None: | |
return zoom(img, (aimsize[0] / _shape[0], 1, aimsize[2] / _shape[2]), order=order) # resample for cube_size | |
if aimsize[2] is None: | |
return zoom(img, (aimsize[0] / _shape[0], aimsize[1] / _shape[1], 1), order=order) # resample for cube_size | |
return zoom(img, (aimsize[0] / _shape[0], aimsize[1] / _shape[1], aimsize[2] / _shape[2]), | |
order=order) # resample for cube_size | |
def get_lc(): | |
global Current_name | |
lc_min = np.array([17,1,0,1,1,1,1,1 , 1 , 1]) | |
lc_max = np.array([96 ,2, 3 ,2, 2,2 , 2 ,2 ,2 ,4]) | |
lc_key = ['age', 'sex', 'time', 'postpartum', 'traumatism', 'diabetes', 'high_blood_pressure', 'cerebral_infarction', 'postoperation'] | |
lc_all = [ALL_message2[Current_name][ii] for ii in lc_key] | |
site_ = Current_name.split('_',1)[-1] | |
if site_ == 'A_L': lc_all.append(1) | |
elif site_ == 'A_R': lc_all.append(2) | |
elif site_ == 'B_L': lc_all.append(3) | |
elif site_ == 'B_R': lc_all.append(4) | |
else: pass | |
lc_all = (np.array(lc_all)-lc_min)/(lc_max-lc_min+ 1e-12) | |
a = 5 | |
return lc_all | |
def inference(): | |
global Image_small_3D | |
global ROI_small_3D | |
model = classnet | |
data_3d = Image_small_3D | |
lc_data = get_lc() | |
lc_data = np.expand_dims(lc_data, axis=0) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model.eval() | |
try: | |
#影像模型 | |
with torch.no_grad(): | |
all_probs = np.empty((0, 3)) | |
for ii in tqdm(range(0, data_3d.shape[1]),total = data_3d.shape[1]): | |
data = torch.from_numpy(data_3d[:,ii,:]) | |
roi = torch.from_numpy(ROI_small_3D[:,ii,:].astype(np.int8)) | |
image = torch.unsqueeze(data, 0) | |
roi = torch.unsqueeze(torch.unsqueeze(roi, 0),0).to(device).float() | |
patch_data = torch.unsqueeze(image, 0).to(device).float() # (N, C_{in}, D_{in}, H_{in}, W_{in}) | |
# Pre : Prediction Result | |
pre_probs = model(patch_data,roi) | |
pre_probs = torch.nn.functional.softmax(pre_probs, dim=1) | |
all_probs = np.concatenate((all_probs, pre_probs.cpu().numpy()), axis=0) | |
dl_prob = np.mean(all_probs, axis=0) | |
dl_prob = np.expand_dims(dl_prob, axis=0) | |
lc_prob = LC_model.predict_proba(lc_data) | |
feature = DR_model.transform(np.concatenate([dl_prob, lc_prob], axis=1)) | |
final_p = TF_model.predict_proba(feature) | |
final_p = np.round(final_p[0], decimals=2) | |
return {'急性期': final_p[0], '亚急性期': final_p[1], '慢性期': final_p[2]} | |
except: | |
return ' ' | |
def get_Image_reslice(input_file): | |
'''得到图像 返回随即层''' | |
global Image_3D | |
global Current_name | |
global Input_File | |
if isinstance(input_file, str): | |
input_file = input_file | |
else: | |
input_file = input_file.name | |
Input_File = input_file | |
print(input_file) | |
Image_3D = sitk.GetArrayFromImage(sitk.ReadImage(input_file)) | |
Current_name = input_file.split(os.sep)[-1].split('.')[0].rsplit('_', 1)[0] | |
Image_3D = (np.max(Image_3D) - Image_3D) / (np.max(Image_3D) - np.min(Image_3D)) | |
random_z = np.random.randint(0, Image_3D.shape[0]) | |
image_slice_z = Image_3D[random_z, :, :] | |
random_y = np.random.randint(0, Image_3D.shape[1]) | |
image_slice_y = Image_3D[:, random_y, :] | |
random_x = np.random.randint(0, Image_3D.shape[2]) | |
image_slice_x = Image_3D[:, :, random_x] | |
# return zoom(image_slice_z, (10 / image_slice_z.shape[0], 10 / image_slice_z.shape[1]), order=3) , \ | |
# zoom(image_slice_y, (10 / image_slice_y.shape[0], 10 / image_slice_y.shape[1]), order=3), \ | |
# zoom(image_slice_x, (10 / image_slice_x.shape[0], 10 / image_slice_x.shape[1]), order=3) | |
return image_slice_z, \ | |
image_slice_y, \ | |
image_slice_x, random_z, random_y, random_x, '影像数据加载成功' | |
def get_ROI(input_file): | |
'''得到图像 返回随即层''' | |
global ROI_3D | |
if isinstance(input_file, str): | |
input_file = input_file | |
else: | |
input_file = input_file.name | |
Image_3D = sitk.GetArrayFromImage(sitk.ReadImage(input_file)) | |
ROI_3D = Image_3D | |
unique_elements = np.unique(ROI_3D) | |
a = 5 | |
if np.where(unique_elements>1)[0]: | |
return '这个数据没有经过二值化' | |
else: | |
return '感兴趣区域加载成功' | |
def change_image_slice_x(slice): | |
image_slice = Image_3D[:, :, slice - 1] | |
cut_thre = np.percentile(image_slice, 99.9) # 直方图99.9%右侧值不要 | |
image_slice[image_slice >= cut_thre] = cut_thre | |
image_slice = (((np.max(image_slice) -image_slice)/(np.max(image_slice) - np.min(image_slice)))*255).astype(np.int16) | |
a = 5 | |
return image_slice | |
def change_image_slice_y(slice): | |
image_slice = Image_3D[:, slice - 1, :] | |
cut_thre = np.percentile(image_slice, 99.9) # 直方图99.9%右侧值不要 | |
image_slice[image_slice >= cut_thre] = cut_thre | |
image_slice = (((np.max(image_slice) - image_slice) / (np.max(image_slice) - np.min(image_slice))) * 255).astype( | |
np.int16) | |
return image_slice | |
def change_image_slice_z(slice): | |
image_slice = Image_3D[slice - 1, :, :] | |
cut_thre = np.percentile(image_slice, 99.9) # 直方图99.9%右侧值不要 | |
image_slice[image_slice >= cut_thre] = cut_thre | |
image_slice = (((np.max(image_slice) - image_slice) / (np.max(image_slice) - np.min(image_slice))) * 255).astype(np.int16) | |
return image_slice | |
def get_medical_message(): | |
global Current_name | |
if Current_name == None: | |
return '请先加载数据', ' ' | |
else: | |
past = ALL_message[Current_name]['past'] | |
now = ALL_message[Current_name]['now'] | |
return past, now | |
def clear_all(): | |
global Image_3D | |
global Current_name | |
Current_name = None | |
Image_3D = None | |
return np.ones((10, 10)), np.ones((10, 10)), np.ones((10, 10)), '', '', ' ',"尚未进行预处理 请先预处理再按“分期结果”按钮","尚未加载影像数据","尚未加载感兴趣区域" | |
def get_box(mask): | |
""" | |
:param mask: array,输入金标准图像 | |
:return: | |
""" | |
# 得到boxx坐标 | |
# 计算得到bbox,形式为[dim0min, dim0max, dim1min, dim1max, dim2min, dim2max] | |
indexx = np.where(mask > 0.) # 返回坐标,几维就是几组坐标,坐标纵向看 | |
dim0min, dim0max, dim1min, dim1max, dim2min, dim2max = [np.min(indexx[0]), np.max(indexx[0]), | |
np.min(indexx[1]), np.max(indexx[1]), | |
np.min(indexx[2]), np.max(indexx[2])] | |
bbox = [dim0min, dim0max, dim1min, dim1max, dim2min, dim2max] | |
return bbox | |
def arry_crop_3D(img,mask,ex_pix): | |
''' | |
得到小图,并外扩 | |
:param img array 3D | |
:param mask array | |
:param ex_pix: list [a,b,c] 向两侧各自外扩多少 维度顺序与输入一致 | |
:param z_waikuo:z轴是否外扩,默认第一维 务必提前确认 !! | |
''' | |
if len(ex_pix)==1: | |
ex_pix=[ex_pix[0] for _ in range(3)] | |
elif len(ex_pix) == 2: | |
print('如果z轴不外扩,第一维请输入0') | |
sys.exit() | |
[dim0min, dim0max, dim1min, dim1max, dim2min, dim2max] = get_box(mask) | |
#判断能否外扩 | |
dim0,dim1,dim2 = img.shape | |
dim1_l_index = np.clip(dim1min-ex_pix[1],0 ,dim1) #dim1外扩后左边的坐标,若触碰边界,则尽量外扩至边界 | |
dim1_r_index = np.clip(dim1max + ex_pix[1], 0, dim1) | |
dim2_l_index = np.clip(dim2min - ex_pix[2], 0, dim2) | |
dim2_r_index = np.clip(dim2max + ex_pix[2], 0, dim2) | |
fina_img = img[:, dim1_l_index:dim1_r_index+1, dim2_l_index:dim2_r_index+1] | |
fina_mask = mask[:, dim1_l_index:dim1_r_index+1, dim2_l_index:dim2_r_index+1] | |
if ex_pix[0]: | |
dim0_l_index = np.clip(dim0min - ex_pix[0], 0, dim0) | |
dim0_r_index = np.clip(dim0max + ex_pix[0], 0, dim0) | |
fina_img = fina_img[dim0_l_index:dim0_r_index+1, :, :] | |
fina_mask = fina_mask[dim0_l_index:dim0_r_index+1, :, :] | |
else: #不外扩 | |
print('dim0 不外扩') | |
dim0_l_index = dim0min | |
dim0_r_index = dim0max | |
fina_img = fina_img[dim0_l_index:dim0_r_index+1, :, :] | |
fina_mask = fina_mask[dim0_l_index:dim0_r_index+1, :, :] | |
return fina_img, fina_mask | |
def data_pretreatment(): | |
global Image_3D | |
global ROI_3D | |
global ROI_small_3D | |
global Image_small_3D | |
global Current_name | |
global Input_File | |
if Image_3D.all() ==None: | |
return '没有数据' | |
else: | |
roi = ROI_3D | |
# waikuo = [4, 4, 4] | |
# fina_img, fina_mask = arry_crop_3D(Image_3D,roi,waikuo) | |
cut_thre = np.percentile(fina_img, 99.9) # 直方图99.9%右侧值不要 | |
fina_img[fina_img >= cut_thre] = cut_thre | |
z, y, x = fina_img.shape | |
fina_img = resize3D(fina_img, [224,y,224], order=3) | |
fina_roi = resize3D(roi, [224, y, 224], order=3) | |
fina_img = (np.max(fina_img)-fina_img)/(np.max(fina_img)-np.min(fina_img)) | |
Image_small_3D = fina_img | |
ROI_small_3D = fina_roi | |
return '预处理结束' | |
class App: | |
def __init__(self): | |
self.demo = None | |
self.main() | |
def main(self): | |
# get_name = gr.Interface(lambda name: name, inputs="textbox", outputs="textbox") | |
# prepend_hello = gr.Interface(lambda name: f"Hello {name}!", inputs="textbox", outputs="textbox") | |
# append_nice = gr.Interface(lambda greeting: f"{greeting} Nice to meet you!", | |
# inputs="textbox", outputs=gr.Textbox(label="Greeting")) | |
# iface_1 = gr.Interface(fn=get_Image_reslice, inputs=gr.inputs.File(label="Upload NIfTI file"), outputs=[,gr.Image(shape=(5, 5)),gr.Image(shape=(5, 5))]) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
inp = gr.inputs.File(label="Upload MRI file") | |
inp2 = gr.inputs.File(label="Upload ROI file") | |
with gr.Column(scale=1): | |
out8 = gr.Textbox(placeholder="尚未加载影像数据") | |
out9 = gr.Textbox(placeholder="尚未加载感兴趣区域") | |
with gr.Row(): | |
btn1 = gr.Button("Upload MRI") | |
btn5 = gr.Button("Upload ROI") | |
clear = gr.Button(" Clear All") | |
with gr.Tab("Image"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
out1 = gr.Image(shape=(10, 10)) | |
slider1 = gr.Slider(1, 128, label='z轴层数', step=1, interactive=True) | |
with gr.Column(scale=1): | |
out2 = gr.Image(shape=(10, 10)) | |
slider2 = gr.Slider(1, 256, label='y轴层数', step=1, interactive=True) | |
with gr.Column(scale=1): | |
out3 = gr.Image(shape=(10, 10)) | |
slider3 = gr.Slider(1, 128, label='x轴层数', step=1, interactive=True) | |
with gr.Tab("Medical Information"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
btn2 = gr.Button(value="临床信息") | |
out4 = gr.Textbox(label="患病史") | |
out6 = gr.Textbox(label="现病史") | |
with gr.Column(scale=1): | |
btn4 = gr.Button("预处理") | |
out7 = gr.Textbox(placeholder="尚未进行预处理 请先预处理再按“分期结果”按钮", ) | |
btn3 = gr.Button("分期结果") | |
out5 = gr.Label(num_top_classes=2, label='分期结果') | |
btn3.click(inference, inputs=None, outputs=out5) | |
btn4.click(data_pretreatment, inputs=None, outputs=out7) | |
btn2.click(get_medical_message, inputs=None, outputs=[out4, out6]) | |
# demo = gr.Series(get_name, prepend_hello, append_nice) | |
btn1.click(get_Image_reslice, inp, [out1, out2, out3, slider1, slider2, slider3,out8]) | |
btn5.click(get_ROI, inputs=inp2, outputs=out9) | |
slider3.change(change_image_slice_x, inputs=slider3, outputs=out3) | |
slider2.change(change_image_slice_y, inputs=slider2, outputs=out2) | |
slider1.change(change_image_slice_z, inputs=slider1, outputs=out1) | |
clear.click(clear_all, None, [out1, out2, out3, out4, out6, out5, out7,out8,out9], queue=True) | |
gr.Markdown('''# Examples''') | |
gr.Examples( | |
examples=[["./2239561_B_R_MRI.nii.gz"], | |
["./2239561_B_R_MRI.nii.gz"]], | |
inputs=inp, | |
outputs=[out1, out2, out3, slider1, slider2, slider3,out8], | |
fn=get_Image_reslice, | |
cache_examples=True, | |
) | |
gr.Examples( | |
examples=[["./2239561_B_R_ROI.nii.gz"], | |
["./2239561_B_R_ROI.nii.gz"]], | |
inputs=inp2, | |
outputs=out9, | |
fn=get_ROI, | |
cache_examples=True, | |
) | |
demo.queue(concurrency_count=6) | |
demo.launch(share=False) | |
app = App() |