demo / app.py
amazinghaha's picture
Update app.py
8e6e33b
raw
history blame
13.3 kB
import gradio as gr
import torch
import os
import numpy as np
import SimpleITK as sitk
from scipy.ndimage import zoom
from resnet_gn import resnet50
import pickle
#import tempfile
def load_from_pkl(load_path):
data_input = open(load_path, 'rb')
read_data = pickle.load(data_input)
data_input.close()
return read_data
Image_3D = None
Current_name = None
ALL_message = load_from_pkl(r'./label0601.pkl')
Model_Paht = r'./model_epoch62.pth.tar'
checkpoint = torch.load(Model_Paht, map_location='cpu')
classnet = resnet50(
num_classes=1,
sample_size=128,
sample_duration=8)
classnet.load_state_dict(checkpoint['model_dict'])
def resize3D(img, aimsize, order=3):
"""
:param img: 3D array
:param aimsize: list, one or three elements, like [256], or [256,56,56]
:return:
"""
_shape = img.shape
if len(aimsize) == 1:
aimsize = [aimsize[0] for _ in range(3)]
if aimsize[0] is None:
return zoom(img, (1, aimsize[1] / _shape[1], aimsize[2] / _shape[2]), order=order) # resample for cube_size
if aimsize[1] is None:
return zoom(img, (aimsize[0] / _shape[0], 1, aimsize[2] / _shape[2]), order=order) # resample for cube_size
if aimsize[2] is None:
return zoom(img, (aimsize[0] / _shape[0], aimsize[1] / _shape[1], 1), order=order) # resample for cube_size
return zoom(img, (aimsize[0] / _shape[0], aimsize[1] / _shape[1], aimsize[2] / _shape[2]),
order=order) # resample for cube_size
def inference():
global Image_small_3D
model = classnet
data = Image_small_3D
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.eval()
all_loss = 0
length = 0
try:
with torch.no_grad():
data = torch.from_numpy(data)
image = torch.unsqueeze(data, 0)
patch_data = torch.unsqueeze(image, 0).to(device).float() # (N, C_{in}, D_{in}, H_{in}, W_{in})
# Pre : Prediction Result
pre_probs = model(patch_data)
# pre_probs = F.sigmoid(pre_probs)#todo
pre_flat = pre_probs.view(-1)
np.round(pre_flat.numpy()[0], decimals=2)
# (1-pre_flat.numpy()[0]).astype(np.float32)
# pre_flat.numpy()[0].astype(np.float32)
# p = float(np.round(pre_flat.numpy()[0], decimals=2))
# n = float(np.round(1 - p, decimals=2))
p = np.round(float(pre_flat.numpy()[0]), decimals=2)
n = np.round(float(1 - p), decimals=2)
return {'急性期': n, '亚急性期': p}
except:
return ' '
def get_Image_reslice(input_file):
'''得到图像 返回随即层'''
global Image_3D
global Current_name
global Input_File
if isinstance(input_file, str):
input_file = input_file
else:
input_file = input_file.name
Input_File = input_file
print(input_file)
Image_3D = sitk.GetArrayFromImage(sitk.ReadImage(input_file))
Current_name = input_file.split(os.sep)[-1].split('.')[0].rsplit('_', 1)[0]
Image_3D = (np.max(Image_3D) - Image_3D) / (np.max(Image_3D) - np.min(Image_3D))
random_z = np.random.randint(0, Image_3D.shape[0])
image_slice_z = Image_3D[random_z, :, :]
random_y = np.random.randint(0, Image_3D.shape[1])
image_slice_y = Image_3D[:, random_y, :]
random_x = np.random.randint(0, Image_3D.shape[2])
image_slice_x = Image_3D[:, :, random_x]
# return zoom(image_slice_z, (10 / image_slice_z.shape[0], 10 / image_slice_z.shape[1]), order=3) , \
# zoom(image_slice_y, (10 / image_slice_y.shape[0], 10 / image_slice_y.shape[1]), order=3), \
# zoom(image_slice_x, (10 / image_slice_x.shape[0], 10 / image_slice_x.shape[1]), order=3)
return image_slice_z, \
image_slice_y, \
image_slice_x, random_z, random_y, random_x, '影像数据加载成功'
def get_ROI(input_file):
'''得到图像 返回随即层'''
global ROI_3D
if isinstance(input_file, str):
input_file = input_file
else:
input_file = input_file.name
Image_3D = sitk.GetArrayFromImage(sitk.ReadImage(input_file))
ROI_3D = Image_3D
unique_elements = np.unique(ROI_3D)
a = 5
if np.where(unique_elements>1)[0]:
return '这个数据没有经过二值化'
else:
return '感兴趣区域加载成功'
def change_image_slice_x(slice):
image_slice = Image_3D[:, :, slice - 1]
cut_thre = np.percentile(image_slice, 99.9) # 直方图99.9%右侧值不要
image_slice[image_slice >= cut_thre] = cut_thre
image_slice = (((np.max(image_slice) -image_slice)/(np.max(image_slice) - np.min(image_slice)))*255).astype(np.int16)
a = 5
return image_slice
def change_image_slice_y(slice):
image_slice = Image_3D[:, slice - 1, :]
cut_thre = np.percentile(image_slice, 99.9) # 直方图99.9%右侧值不要
image_slice[image_slice >= cut_thre] = cut_thre
image_slice = (((np.max(image_slice) - image_slice) / (np.max(image_slice) - np.min(image_slice))) * 255).astype(
np.int16)
return image_slice
def change_image_slice_z(slice):
image_slice = Image_3D[slice - 1, :, :]
cut_thre = np.percentile(image_slice, 99.9) # 直方图99.9%右侧值不要
image_slice[image_slice >= cut_thre] = cut_thre
image_slice = (((np.max(image_slice) - image_slice) / (np.max(image_slice) - np.min(image_slice))) * 255).astype(np.int16)
return image_slice
def get_medical_message():
global Current_name
if Current_name == None:
return '请先加载数据', ' '
else:
past = ALL_message[Current_name]['past']
now = ALL_message[Current_name]['now']
return past, now
def clear_all():
global Image_3D
global Current_name
Current_name = None
Image_3D = None
return np.ones((10, 10)), np.ones((10, 10)), np.ones((10, 10)), '', '', ' ',"尚未进行预处理 请先预处理再按“分期结果”按钮","尚未加载影像数据","尚未加载感兴趣区域"
def get_box(mask):
"""
:param mask: array,输入金标准图像
:return:
"""
# 得到boxx坐标
# 计算得到bbox,形式为[dim0min, dim0max, dim1min, dim1max, dim2min, dim2max]
indexx = np.where(mask > 0.) # 返回坐标,几维就是几组坐标,坐标纵向看
dim0min, dim0max, dim1min, dim1max, dim2min, dim2max = [np.min(indexx[0]), np.max(indexx[0]),
np.min(indexx[1]), np.max(indexx[1]),
np.min(indexx[2]), np.max(indexx[2])]
bbox = [dim0min, dim0max, dim1min, dim1max, dim2min, dim2max]
return bbox
def arry_crop_3D(img,mask,ex_pix):
'''
得到小图,并外扩
:param img array 3D
:param mask array
:param ex_pix: list [a,b,c] 向两侧各自外扩多少 维度顺序与输入一致
:param z_waikuo:z轴是否外扩,默认第一维 务必提前确认 !!
'''
if len(ex_pix)==1:
ex_pix=[ex_pix[0] for _ in range(3)]
elif len(ex_pix) == 2:
print('如果z轴不外扩,第一维请输入0')
sys.exit()
[dim0min, dim0max, dim1min, dim1max, dim2min, dim2max] = get_box(mask)
#判断能否外扩
dim0,dim1,dim2 = img.shape
dim1_l_index = np.clip(dim1min-ex_pix[1],0 ,dim1) #dim1外扩后左边的坐标,若触碰边界,则尽量外扩至边界
dim1_r_index = np.clip(dim1max + ex_pix[1], 0, dim1)
dim2_l_index = np.clip(dim2min - ex_pix[2], 0, dim2)
dim2_r_index = np.clip(dim2max + ex_pix[2], 0, dim2)
fina_img = img[:, dim1_l_index:dim1_r_index+1, dim2_l_index:dim2_r_index+1]
fina_mask = mask[:, dim1_l_index:dim1_r_index+1, dim2_l_index:dim2_r_index+1]
if ex_pix[0]:
dim0_l_index = np.clip(dim0min - ex_pix[0], 0, dim0)
dim0_r_index = np.clip(dim0max + ex_pix[0], 0, dim0)
fina_img = fina_img[dim0_l_index:dim0_r_index+1, :, :]
fina_mask = fina_mask[dim0_l_index:dim0_r_index+1, :, :]
else: #不外扩
print('dim0 不外扩')
dim0_l_index = dim0min
dim0_r_index = dim0max
fina_img = fina_img[dim0_l_index:dim0_r_index+1, :, :]
fina_mask = fina_mask[dim0_l_index:dim0_r_index+1, :, :]
return fina_img, fina_mask
def data_pretreatment():
global Image_3D
global ROI_3D
global Image_small_3D
global Current_name
global Input_File
if Image_3D.all() ==None:
return '没有数据'
else:
roi = ROI_3D
waikuo = [4, 4, 4]
fina_img, fina_mask = arry_crop_3D(Image_3D,roi,waikuo)
cut_thre = np.percentile(fina_img, 99.9) # 直方图99.9%右侧值不要
fina_img[fina_img >= cut_thre] = cut_thre
fina_img = resize3D(fina_img, [128,256,128], order=3)
fina_img = (np.max(fina_img)-fina_img)/(np.max(fina_img)-np.min(fina_img))
Image_small_3D = fina_img
return '预处理结束'
class App:
def __init__(self):
self.demo = None
self.main()
def main(self):
# get_name = gr.Interface(lambda name: name, inputs="textbox", outputs="textbox")
# prepend_hello = gr.Interface(lambda name: f"Hello {name}!", inputs="textbox", outputs="textbox")
# append_nice = gr.Interface(lambda greeting: f"{greeting} Nice to meet you!",
# inputs="textbox", outputs=gr.Textbox(label="Greeting"))
# iface_1 = gr.Interface(fn=get_Image_reslice, inputs=gr.inputs.File(label="Upload NIfTI file"), outputs=[,gr.Image(shape=(5, 5)),gr.Image(shape=(5, 5))])
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
inp = gr.inputs.File(label="Upload MRI file")
inp2 = gr.inputs.File(label="Upload ROI file")
with gr.Column(scale=1):
out8 = gr.Textbox(placeholder="尚未加载影像数据")
out9 = gr.Textbox(placeholder="尚未加载感兴趣区域")
with gr.Row():
btn1 = gr.Button("Upload MRI")
btn5 = gr.Button("Upload ROI")
clear = gr.Button(" Clear All")
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1):
out1 = gr.Image(shape=(10, 10))
slider1 = gr.Slider(1, 128, label='z轴层数', step=1, interactive=True)
with gr.Column(scale=1):
out2 = gr.Image(shape=(10, 10))
slider2 = gr.Slider(1, 256, label='y轴层数', step=1, interactive=True)
with gr.Column(scale=1):
out3 = gr.Image(shape=(10, 10))
slider3 = gr.Slider(1, 128, label='x轴层数', step=1, interactive=True)
with gr.Tab("Medical Information"):
with gr.Row():
with gr.Column(scale=1):
btn2 = gr.Button(value="临床信息")
out4 = gr.Textbox(label="患病史")
out6 = gr.Textbox(label="现病史")
with gr.Column(scale=1):
btn4 = gr.Button("预处理")
out7 = gr.Textbox(placeholder="尚未进行预处理 请先预处理再按“分期结果”按钮", )
btn3 = gr.Button("分期结果")
out5 = gr.Label(num_top_classes=2, label='分期结果')
btn3.click(inference, inputs=None, outputs=out5)
btn4.click(data_pretreatment, inputs=None, outputs=out7)
btn2.click(get_medical_message, inputs=None, outputs=[out4, out6])
# demo = gr.Series(get_name, prepend_hello, append_nice)
btn1.click(get_Image_reslice, inp, [out1, out2, out3, slider1, slider2, slider3,out8])
btn5.click(get_ROI, inputs=inp2, outputs=out9)
slider3.change(change_image_slice_x, inputs=slider3, outputs=out3)
slider2.change(change_image_slice_y, inputs=slider2, outputs=out2)
slider1.change(change_image_slice_z, inputs=slider1, outputs=out1)
clear.click(clear_all, None, [out1, out2, out3, out4, out6, out5, out7,out8,out9], queue=True)
gr.Markdown('''# Examples''')
gr.Examples(
examples=[["./155086_A_R_MRI.nii.gz"],
["./4077798_A_L_MRI.nii.gz"]],
inputs=inp,
outputs=[out1, out2, out3, slider1, slider2, slider3,out8],
fn=get_Image_reslice,
cache_examples=True,
)
gr.Examples(
examples=[["./155086_A_R_ROI.nii.gz"],
["./4077798_A_L_ROI.nii.gz"]],
inputs=inp2,
outputs=out9,
fn=get_ROI,
cache_examples=True,
)
demo.queue(concurrency_count=6)
demo.launch(share=False)
app = App()