Spaces:
Sleeping
Sleeping
""" | |
BlurPool layer inspired by | |
- Kornia's Max_BlurPool2d | |
- Making Convolutional Networks Shift-Invariant Again :cite:`zhang2019shiftinvar` | |
Hacked together by Chris Ha and Ross Wightman | |
""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from .padding import get_padding | |
class BlurPool2d(nn.Module): | |
r"""Creates a module that computes blurs and downsample a given feature map. | |
See :cite:`zhang2019shiftinvar` for more details. | |
Corresponds to the Downsample class, which does blurring and subsampling | |
Args: | |
channels = Number of input channels | |
filt_size (int): binomial filter size for blurring. currently supports 3 (default) and 5. | |
stride (int): downsampling filter stride | |
Returns: | |
torch.Tensor: the transformed tensor. | |
""" | |
def __init__(self, channels, filt_size=3, stride=2) -> None: | |
super(BlurPool2d, self).__init__() | |
assert filt_size > 1 | |
self.channels = channels | |
self.filt_size = filt_size | |
self.stride = stride | |
self.padding = [get_padding(filt_size, stride, dilation=1)] * 4 | |
coeffs = torch.tensor((np.poly1d((0.5, 0.5)) ** (self.filt_size - 1)).coeffs.astype(np.float32)) | |
blur_filter = (coeffs[:, None] * coeffs[None, :])[None, None, :, :].repeat(self.channels, 1, 1, 1) | |
self.register_buffer('filt', blur_filter, persistent=False) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = F.pad(x, self.padding, 'reflect') | |
return F.conv2d(x, self.filt, stride=self.stride, groups=x.shape[1]) | |