Spaces:
Sleeping
Sleeping
""" Halo Self Attention | |
Paper: `Scaling Local Self-Attention for Parameter Efficient Visual Backbones` | |
- https://arxiv.org/abs/2103.12731 | |
@misc{2103.12731, | |
Author = {Ashish Vaswani and Prajit Ramachandran and Aravind Srinivas and Niki Parmar and Blake Hechtman and | |
Jonathon Shlens}, | |
Title = {Scaling Local Self-Attention for Parameter Efficient Visual Backbones}, | |
Year = {2021}, | |
} | |
Status: | |
This impl is a WIP, there is no official ref impl and some details in paper weren't clear to me. | |
Trying to match the 'H1' variant in the paper, my parameter counts are 2M less and the model | |
is extremely slow. Something isn't right. However, the models do appear to train and experimental | |
variants with attn in C4 and/or C5 stages are tolerable speed. | |
Hacked together by / Copyright 2021 Ross Wightman | |
""" | |
from typing import Tuple, List | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from .weight_init import trunc_normal_ | |
def rel_logits_1d(q, rel_k, permute_mask: List[int]): | |
""" Compute relative logits along one dimension | |
As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 | |
Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925 | |
Args: | |
q: (batch, height, width, dim) | |
rel_k: (2 * window - 1, dim) | |
permute_mask: permute output dim according to this | |
""" | |
B, H, W, dim = q.shape | |
rel_size = rel_k.shape[0] | |
win_size = (rel_size + 1) // 2 | |
x = (q @ rel_k.transpose(-1, -2)) | |
x = x.reshape(-1, W, rel_size) | |
# pad to shift from relative to absolute indexing | |
x_pad = F.pad(x, [0, 1]).flatten(1) | |
x_pad = F.pad(x_pad, [0, rel_size - W]) | |
# reshape and slice out the padded elements | |
x_pad = x_pad.reshape(-1, W + 1, rel_size) | |
x = x_pad[:, :W, win_size - 1:] | |
# reshape and tile | |
x = x.reshape(B, H, 1, W, win_size).expand(-1, -1, win_size, -1, -1) | |
return x.permute(permute_mask) | |
class PosEmbedRel(nn.Module): | |
""" Relative Position Embedding | |
As per: https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 | |
Originally from: `Attention Augmented Convolutional Networks` - https://arxiv.org/abs/1904.09925 | |
""" | |
def __init__(self, block_size, win_size, dim_head, scale): | |
""" | |
Args: | |
block_size (int): block size | |
win_size (int): neighbourhood window size | |
dim_head (int): attention head dim | |
scale (float): scale factor (for init) | |
""" | |
super().__init__() | |
self.block_size = block_size | |
self.dim_head = dim_head | |
self.scale = scale | |
self.height_rel = nn.Parameter(torch.randn(win_size * 2 - 1, dim_head) * self.scale) | |
self.width_rel = nn.Parameter(torch.randn(win_size * 2 - 1, dim_head) * self.scale) | |
def forward(self, q): | |
B, BB, HW, _ = q.shape | |
# relative logits in width dimension. | |
q = q.reshape(-1, self.block_size, self.block_size, self.dim_head) | |
rel_logits_w = rel_logits_1d(q, self.width_rel, permute_mask=(0, 1, 3, 2, 4)) | |
# relative logits in height dimension. | |
q = q.transpose(1, 2) | |
rel_logits_h = rel_logits_1d(q, self.height_rel, permute_mask=(0, 3, 1, 4, 2)) | |
rel_logits = rel_logits_h + rel_logits_w | |
rel_logits = rel_logits.reshape(B, BB, HW, -1) | |
return rel_logits | |
class HaloAttn(nn.Module): | |
""" Halo Attention | |
Paper: `Scaling Local Self-Attention for Parameter Efficient Visual Backbones` | |
- https://arxiv.org/abs/2103.12731 | |
""" | |
def __init__( | |
self, dim, dim_out=None, stride=1, num_heads=8, dim_head=16, block_size=8, halo_size=3, qkv_bias=False): | |
super().__init__() | |
dim_out = dim_out or dim | |
assert dim_out % num_heads == 0 | |
self.stride = stride | |
self.num_heads = num_heads | |
self.dim_head = dim_head | |
self.dim_qk = num_heads * dim_head | |
self.dim_v = dim_out | |
self.block_size = block_size | |
self.halo_size = halo_size | |
self.win_size = block_size + halo_size * 2 # neighbourhood window size | |
self.scale = self.dim_head ** -0.5 | |
# FIXME not clear if this stride behaviour is what the paper intended | |
# Also, the paper mentions using a 3D conv for dealing with the blocking/gather, and leaving | |
# data in unfolded block form. I haven't wrapped my head around how that'd look. | |
self.q = nn.Conv2d(dim, self.dim_qk, 1, stride=self.stride, bias=qkv_bias) | |
self.kv = nn.Conv2d(dim, self.dim_qk + self.dim_v, 1, bias=qkv_bias) | |
self.pos_embed = PosEmbedRel( | |
block_size=block_size // self.stride, win_size=self.win_size, dim_head=self.dim_head, scale=self.scale) | |
def reset_parameters(self): | |
std = self.q.weight.shape[1] ** -0.5 # fan-in | |
trunc_normal_(self.q.weight, std=std) | |
trunc_normal_(self.kv.weight, std=std) | |
trunc_normal_(self.pos_embed.height_rel, std=self.scale) | |
trunc_normal_(self.pos_embed.width_rel, std=self.scale) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
assert H % self.block_size == 0 and W % self.block_size == 0 | |
num_h_blocks = H // self.block_size | |
num_w_blocks = W // self.block_size | |
num_blocks = num_h_blocks * num_w_blocks | |
q = self.q(x) | |
q = F.unfold(q, kernel_size=self.block_size // self.stride, stride=self.block_size // self.stride) | |
# B, num_heads * dim_head * block_size ** 2, num_blocks | |
q = q.reshape(B * self.num_heads, self.dim_head, -1, num_blocks).transpose(1, 3) | |
# B * num_heads, num_blocks, block_size ** 2, dim_head | |
kv = self.kv(x) | |
# FIXME I 'think' this unfold does what I want it to, but I should investigate | |
kv = F.unfold(kv, kernel_size=self.win_size, stride=self.block_size, padding=self.halo_size) | |
kv = kv.reshape( | |
B * self.num_heads, self.dim_head + (self.dim_v // self.num_heads), -1, num_blocks).transpose(1, 3) | |
k, v = torch.split(kv, [self.dim_head, self.dim_v // self.num_heads], dim=-1) | |
attn_logits = (q @ k.transpose(-1, -2)) * self.scale # FIXME should usual attn scale be applied? | |
attn_logits = attn_logits + self.pos_embed(q) # B * num_heads, block_size ** 2, win_size ** 2 | |
attn_out = attn_logits.softmax(dim=-1) | |
attn_out = (attn_out @ v).transpose(1, 3) # B * num_heads, dim_v // num_heads, block_size ** 2, num_blocks | |
attn_out = F.fold( | |
attn_out.reshape(B, -1, num_blocks), | |
(H // self.stride, W // self.stride), | |
kernel_size=self.block_size // self.stride, stride=self.block_size // self.stride) | |
# B, dim_out, H // stride, W // stride | |
return attn_out | |