Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn as nn | |
try: | |
from inplace_abn.functions import inplace_abn, inplace_abn_sync | |
has_iabn = True | |
except ImportError: | |
has_iabn = False | |
def inplace_abn(x, weight, bias, running_mean, running_var, | |
training=True, momentum=0.1, eps=1e-05, activation="leaky_relu", activation_param=0.01): | |
raise ImportError( | |
"Please install InplaceABN:'pip install git+https://github.com/mapillary/[email protected]'") | |
def inplace_abn_sync(**kwargs): | |
inplace_abn(**kwargs) | |
class InplaceAbn(nn.Module): | |
"""Activated Batch Normalization | |
This gathers a BatchNorm and an activation function in a single module | |
Parameters | |
---------- | |
num_features : int | |
Number of feature channels in the input and output. | |
eps : float | |
Small constant to prevent numerical issues. | |
momentum : float | |
Momentum factor applied to compute running statistics. | |
affine : bool | |
If `True` apply learned scale and shift transformation after normalization. | |
act_layer : str or nn.Module type | |
Name or type of the activation functions, one of: `leaky_relu`, `elu` | |
act_param : float | |
Negative slope for the `leaky_relu` activation. | |
""" | |
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, apply_act=True, | |
act_layer="leaky_relu", act_param=0.01, drop_block=None): | |
super(InplaceAbn, self).__init__() | |
self.num_features = num_features | |
self.affine = affine | |
self.eps = eps | |
self.momentum = momentum | |
if apply_act: | |
if isinstance(act_layer, str): | |
assert act_layer in ('leaky_relu', 'elu', 'identity', '') | |
self.act_name = act_layer if act_layer else 'identity' | |
else: | |
# convert act layer passed as type to string | |
if act_layer == nn.ELU: | |
self.act_name = 'elu' | |
elif act_layer == nn.LeakyReLU: | |
self.act_name = 'leaky_relu' | |
elif act_layer == nn.Identity: | |
self.act_name = 'identity' | |
else: | |
assert False, f'Invalid act layer {act_layer.__name__} for IABN' | |
else: | |
self.act_name = 'identity' | |
self.act_param = act_param | |
if self.affine: | |
self.weight = nn.Parameter(torch.ones(num_features)) | |
self.bias = nn.Parameter(torch.zeros(num_features)) | |
else: | |
self.register_parameter('weight', None) | |
self.register_parameter('bias', None) | |
self.register_buffer('running_mean', torch.zeros(num_features)) | |
self.register_buffer('running_var', torch.ones(num_features)) | |
self.reset_parameters() | |
def reset_parameters(self): | |
nn.init.constant_(self.running_mean, 0) | |
nn.init.constant_(self.running_var, 1) | |
if self.affine: | |
nn.init.constant_(self.weight, 1) | |
nn.init.constant_(self.bias, 0) | |
def forward(self, x): | |
output = inplace_abn( | |
x, self.weight, self.bias, self.running_mean, self.running_var, | |
self.training, self.momentum, self.eps, self.act_name, self.act_param) | |
if isinstance(output, tuple): | |
output = output[0] | |
return output | |