Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import random | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import torch | |
from diffusers import DiffusionPipeline | |
DESCRIPTION = '# SD-XL' | |
if not torch.cuda.is_available(): | |
DESCRIPTION += '\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>' | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv( | |
'CACHE_EXAMPLES') == '1' | |
MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024')) | |
USE_TORCH_COMPILE = os.getenv('USE_TORCH_COMPILE') == '1' | |
ENABLE_CPU_OFFLOAD = os.getenv('ENABLE_CPU_OFFLOAD') == '1' | |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
if torch.cuda.is_available(): | |
pipe = DiffusionPipeline.from_pretrained( | |
'stabilityai/stable-diffusion-xl-base-1.0', | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant='fp16') | |
refiner = DiffusionPipeline.from_pretrained( | |
'stabilityai/stable-diffusion-xl-refiner-1.0', | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant='fp16') | |
if ENABLE_CPU_OFFLOAD: | |
pipe.enable_model_cpu_offload() | |
refiner.enable_model_cpu_offload() | |
else: | |
pipe.to(device) | |
refiner.to(device) | |
if USE_TORCH_COMPILE: | |
pipe.unet = torch.compile(pipe.unet, | |
mode='reduce-overhead', | |
fullgraph=True) | |
else: | |
pipe = None | |
refiner = None | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def generate(prompt: str, | |
negative_prompt: str = '', | |
prompt_2: str = '', | |
negative_prompt_2: str = '', | |
use_negative_prompt: bool = False, | |
use_prompt_2: bool = False, | |
use_negative_prompt_2: bool = False, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale_base: float = 5.0, | |
guidance_scale_refiner: float = 5.0, | |
num_inference_steps_base: int = 50, | |
num_inference_steps_refiner: int = 50, | |
apply_refiner: bool = False) -> PIL.Image.Image: | |
generator = torch.Generator().manual_seed(seed) | |
if not use_negative_prompt: | |
negative_prompt = None # type: ignore | |
if not use_prompt_2: | |
prompt_2 = None # type: ignore | |
if not use_negative_prompt_2: | |
negative_prompt_2 = None # type: ignore | |
if not apply_refiner: | |
return pipe(prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale_base, | |
num_inference_steps=num_inference_steps_base, | |
generator=generator, | |
output_type='pil').images[0] | |
else: | |
latents = pipe(prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale_base, | |
num_inference_steps=num_inference_steps_base, | |
generator=generator, | |
output_type='latent').images | |
image = refiner(prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
guidance_scale=guidance_scale_refiner, | |
num_inference_steps=num_inference_steps_refiner, | |
image=latents, | |
generator=generator).images[0] | |
return image | |
examples = [ | |
'Astronaut in a jungle, cold color palette, muted colors, detailed, 8k', | |
'An astronaut riding a green horse', | |
] | |
with gr.Blocks(css='style.css') as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton(value='Duplicate Space for private use', | |
elem_id='duplicate-button', | |
visible=os.getenv('SHOW_DUPLICATE_BUTTON') == '1') | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label='Prompt', | |
show_label=False, | |
max_lines=1, | |
placeholder='Enter your prompt', | |
container=False, | |
) | |
run_button = gr.Button('Run', scale=0) | |
result = gr.Image(label='Result', show_label=False) | |
with gr.Accordion('Advanced options', open=False): | |
with gr.Row(): | |
use_negative_prompt = gr.Checkbox(label='Use negative prompt', | |
value=False) | |
use_prompt_2 = gr.Checkbox(label='Use prompt 2', value=False) | |
use_negative_prompt_2 = gr.Checkbox(label='Use negative prompt 2', | |
value=False) | |
negative_prompt = gr.Text( | |
label='Negative prompt', | |
max_lines=1, | |
placeholder='Enter a negative prompt', | |
visible=False, | |
) | |
prompt_2 = gr.Text( | |
label='Prompt 2', | |
max_lines=1, | |
placeholder='Enter your prompt', | |
visible=False, | |
) | |
negative_prompt_2 = gr.Text( | |
label='Negative prompt 2', | |
max_lines=1, | |
placeholder='Enter a negative prompt', | |
visible=False, | |
) | |
seed = gr.Slider(label='Seed', | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0) | |
randomize_seed = gr.Checkbox(label='Randomize seed', value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label='Width', | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label='Height', | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
apply_refiner = gr.Checkbox(label='Apply refiner', value=False) | |
with gr.Row(): | |
guidance_scale_base = gr.Slider(label='Guidance scale for base', | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=5.0) | |
num_inference_steps_base = gr.Slider( | |
label='Number of inference steps for base', | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=50) | |
with gr.Row(visible=False) as refiner_params: | |
guidance_scale_refiner = gr.Slider( | |
label='Guidance scale for refiner', | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=5.0) | |
num_inference_steps_refiner = gr.Slider( | |
label='Number of inference steps for refiner', | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=50) | |
gr.Examples(examples=examples, | |
inputs=prompt, | |
outputs=result, | |
fn=generate, | |
cache_examples=CACHE_EXAMPLES) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
queue=False, | |
api_name=False, | |
) | |
use_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_prompt_2, | |
outputs=prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
use_negative_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt_2, | |
outputs=negative_prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
apply_refiner.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=apply_refiner, | |
outputs=refiner_params, | |
queue=False, | |
api_name=False, | |
) | |
inputs = [ | |
prompt, | |
negative_prompt, | |
prompt_2, | |
negative_prompt_2, | |
use_negative_prompt, | |
use_prompt_2, | |
use_negative_prompt_2, | |
seed, | |
width, | |
height, | |
guidance_scale_base, | |
guidance_scale_refiner, | |
num_inference_steps_base, | |
num_inference_steps_refiner, | |
apply_refiner, | |
] | |
prompt.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
api_name='run', | |
) | |
negative_prompt.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
api_name=False, | |
) | |
prompt_2.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
api_name=False, | |
) | |
negative_prompt_2.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
api_name=False, | |
) | |
run_button.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
api_name=False, | |
) | |
demo.queue(max_size=20).launch() | |