amazonaws-la commited on
Commit
6064cea
·
verified ·
1 Parent(s): 103cb4b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -6
app.py CHANGED
@@ -55,7 +55,6 @@ def generate(
55
  model = 'SG161222/Realistic_Vision_V6.0_B1_noVAE',
56
  vaecall = 'stabilityai/sd-vae-ft-mse',
57
  lora = 'amazonaws-la/juliette',
58
- sampler = 'EulerAncestralDiscreteScheduler',
59
  lora_scale: float = 0.7,
60
  ) -> PIL.Image.Image:
61
  if torch.cuda.is_available():
@@ -63,13 +62,12 @@ def generate(
63
  if not use_vae:
64
  pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
65
  sampler_class = sampler
66
- pipe.scheduler = sampler_class.from_config(pipe.scheduler.config)
67
 
68
  if use_vae:
69
  vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
70
  pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
71
- sampler_class = sampler
72
- pipe.scheduler = sampler_class.from_config(pipe.scheduler.config)
73
 
74
  if use_lora:
75
  pipe.load_lora_weights(lora)
@@ -145,7 +143,6 @@ with gr.Blocks(css="style.css") as demo:
145
  visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
146
  )
147
  with gr.Group():
148
- sampler = gr.Text(label='Sampler', value='EulerAncestralDiscreteScheduler')
149
  model = gr.Text(label='Modelo')
150
  vaecall = gr.Text(label='VAE')
151
  lora = gr.Text(label='LoRA')
@@ -334,7 +331,6 @@ with gr.Blocks(css="style.css") as demo:
334
  model,
335
  vaecall,
336
  lora,
337
- sampler,
338
  lora_scale,
339
  ],
340
  outputs=result,
 
55
  model = 'SG161222/Realistic_Vision_V6.0_B1_noVAE',
56
  vaecall = 'stabilityai/sd-vae-ft-mse',
57
  lora = 'amazonaws-la/juliette',
 
58
  lora_scale: float = 0.7,
59
  ) -> PIL.Image.Image:
60
  if torch.cuda.is_available():
 
62
  if not use_vae:
63
  pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
64
  sampler_class = sampler
65
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
66
 
67
  if use_vae:
68
  vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
69
  pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
70
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
 
71
 
72
  if use_lora:
73
  pipe.load_lora_weights(lora)
 
143
  visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
144
  )
145
  with gr.Group():
 
146
  model = gr.Text(label='Modelo')
147
  vaecall = gr.Text(label='VAE')
148
  lora = gr.Text(label='LoRA')
 
331
  model,
332
  vaecall,
333
  lora,
 
334
  lora_scale,
335
  ],
336
  outputs=result,