File size: 9,389 Bytes
c9d2694
 
 
 
50611af
c9d2694
 
 
 
 
 
 
50611af
 
 
c9d2694
 
 
725e40d
c9d2694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c220fd6
c9d2694
 
deeac93
f1dc8d6
c9d2694
 
 
ed83b69
6835c3e
a2b83e4
 
 
 
 
c220fd6
c9d2694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef049ae
c9d2694
ef049ae
c9d2694
 
 
 
 
 
 
 
 
f4e0432
4d9c8e7
c9d2694
c93f9c0
 
 
 
 
c9d2694
683b10b
e982ba0
683b10b
80f9538
c9d2694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dd9bde
c9d2694
 
 
 
 
 
 
 
 
c93f9c0
 
 
 
 
 
 
 
c9d2694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb05a32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#!/usr/bin/env python

from __future__ import annotations

import requests
import os
import random

import gradio as gr
import numpy as np
import spaces
import torch
from PIL import Image
from io import BytesIO
from diffusers import AutoencoderKL, DiffusionPipeline, StableDiffusionImg2ImgPipeline

DESCRIPTION = "# Run any LoRA or SD Model"
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>⚠️ This space is running on the CPU. This demo doesn't work on CPU 😞! Run on a GPU by duplicating this space or test our website for free and unlimited by <a href='https://squaadai.com'>clicking here</a>, which provides these and more options.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str = "",
    prompt_2: str = "",
    negative_prompt_2: str = "",
    use_negative_prompt: bool = False,
    use_prompt_2: bool = False,
    use_negative_prompt_2: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale_base: float = 5.0,
    num_inference_steps_base: int = 25,
    use_vae: bool = False,
    use_lora: bool = False,
    model = 'runwayml/stable-diffusion-v1-5',
    vaecall = 'madebyollin/sdxl-vae-fp16-fix',
    lora = '',
    lora_scale: float = 0.7,
):
    if torch.cuda.is_available():

        if not use_vae:  
            pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
            
            url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"

            response = requests.get(url)
            init_image = Image.open(BytesIO(response.content)).convert("RGB")
            init_image = init_image.resize((768, 512))
     
        if use_vae:
            vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
            pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
            
        if use_lora:
            pipe.load_lora_weights(lora)
            pipe.fuse_lora(lora_scale)
                                   
        if ENABLE_CPU_OFFLOAD:
            pipe.enable_model_cpu_offload()
            
        else:
            pipe.to(device)

        if USE_TORCH_COMPILE:
            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
        
    generator = torch.Generator().manual_seed(seed)

    if not use_negative_prompt:
        negative_prompt = None  # type: ignore
    if not use_prompt_2:
        prompt_2 = None  # type: ignore
    if not use_negative_prompt_2:
        negative_prompt_2 = None  # type: ignore

        images = pipe(
            prompt=prompt,
            image=init_image,
            negative_prompt=negative_prompt,
            prompt_2=prompt_2,
            negative_prompt_2=negative_prompt_2,
            width=width,
            height=height,
            guidance_scale=guidance_scale_base,
            num_inference_steps=num_inference_steps_base,
            generator=generator,
            output_type="pil",
        ).images
        return image

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
]

with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
    gr.HTML(
        "<p><center>πŸ“™ For any additional support, join our <a href='https://discord.gg/JprjXpjt9K'>Discord</a></center></p>"
    )
    gr.Markdown(DESCRIPTION, elem_id="description")
    with gr.Group():
        model = gr.Text(label='Model', placeholder='e.g. stabilityai/stable-diffusion-xl-base-1.0')
        vaecall = gr.Text(label='VAE', placeholder='e.g. madebyollin/sdxl-vae-fp16-fix')
        lora = gr.Text(label='LoRA', placeholder='e.g. nerijs/pixel-art-xl')
        lora_scale = gr.Slider(
                info="The closer to 1, the more it will resemble LoRA, but errors may be visible.",
                label="Lora Scale",
                minimum=0.01,
                maximum=1,
                step=0.01,
                value=0.7,
            )
        with gr.Row():
            prompt = gr.Text(
                placeholder="Input prompt",
                label="Prompt",
                show_label=False,
                max_lines=1,
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Image(label="Result", show_label=False)
    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            use_vae = gr.Checkbox(label='Use VAE', value=False, visible=ENABLE_USE_VAE)
            use_lora = gr.Checkbox(label='Use Lora', value=False, visible=ENABLE_USE_LORA)
            use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
            use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
            use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
        negative_prompt = gr.Text(
            placeholder="Input Negative Prompt",
            label="Negative prompt",
            max_lines=1,
            visible=False,
        )
        prompt_2 = gr.Text(
            placeholder="Input Prompt 2",
            label="Prompt 2",
            max_lines=1,
            visible=False,
        )
        negative_prompt_2 = gr.Text(
            placeholder="Input Negative Prompt 2",
            label="Negative prompt 2",
            max_lines=1,
            visible=False,
        )

        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            
        with gr.Row():
            guidance_scale_base = gr.Slider(
                info="Scale for classifier-free guidance",
                label="Guidance scale",
                minimum=1,
                maximum=20,
                step=0.1,
                value=5.0,
            )
        with gr.Row():
            num_inference_steps_base = gr.Slider(
                info="Number of denoising steps",
                label="Number of inference steps",
                minimum=10,
                maximum=100,
                step=1,
                value=25,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=result,
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        queue=False,
        api_name=False,
    )
    use_prompt_2.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_prompt_2,
        outputs=prompt_2,
        queue=False,
        api_name=False,
    )
    use_negative_prompt_2.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt_2,
        outputs=negative_prompt_2,
        queue=False,
        api_name=False,
    )
    use_vae.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_vae,
        outputs=vaecall,
        queue=False,
        api_name=False,
    )
    use_lora.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_lora,
        outputs=lora,
        queue=False,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            prompt_2.submit,
            negative_prompt_2.submit,
            run_button.click,
        ],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            prompt_2,
            negative_prompt_2,
            use_negative_prompt,
            use_prompt_2,
            use_negative_prompt_2,
            seed,
            width,
            height,
            guidance_scale_base,
            num_inference_steps_base,
            use_vae,
            use_lora,
            model,
            vaecall,
            lora,
            lora_scale,
        ],
        outputs=result,
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()