Spaces:
Sleeping
Sleeping
File size: 10,803 Bytes
5c0a088 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
from toolbox import CatchException, report_execption, gen_time_str
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
from toolbox import write_history_to_file, get_log_folder
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
from .crazy_utils import read_and_clean_pdf_text
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url
from colorful import *
import os
import math
import logging
def markdown_to_dict(article_content):
import markdown
from bs4 import BeautifulSoup
cur_t = ""
cur_c = ""
results = {}
for line in article_content:
if line.startswith('#'):
if cur_t!="":
if cur_t not in results:
results.update({cur_t:cur_c.lstrip('\n')})
else:
# 处理重名的章节
results.update({cur_t + " " + gen_time_str():cur_c.lstrip('\n')})
cur_t = line.rstrip('\n')
cur_c = ""
else:
cur_c += line
results_final = {}
for k in list(results.keys()):
if k.startswith('# '):
results_final['title'] = k.split('# ')[-1]
results_final['authors'] = results.pop(k).lstrip('\n')
if k.startswith('###### Abstract'):
results_final['abstract'] = results.pop(k).lstrip('\n')
results_final_sections = []
for k,v in results.items():
results_final_sections.append({
'heading':k.lstrip("# "),
'text':v if len(v) > 0 else f"The beginning of {k.lstrip('# ')} section."
})
results_final['sections'] = results_final_sections
return results_final
@CatchException
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
disable_auto_promotion(chatbot)
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import nougat
import tiktoken
except:
report_execption(chatbot, history,
a=f"解析项目: {txt}",
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade nougat-ocr tiktoken```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
history = []
from .crazy_utils import get_files_from_everything
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
# 检测输入参数,如没有给定输入参数,直接退出
if not success:
if txt == "": txt = '空空如也的输入栏'
# 如果没找到任何文件
if len(file_manifest) == 0:
report_execption(chatbot, history,
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 开始正式执行任务
yield from 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
def nougat_with_timeout(command, cwd, timeout=3600):
import subprocess
process = subprocess.Popen(command, shell=True, cwd=cwd)
try:
stdout, stderr = process.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
process.kill()
stdout, stderr = process.communicate()
print("Process timed out!")
return False
return True
def NOUGAT_parse_pdf(fp):
import glob
from toolbox import get_log_folder, gen_time_str
dst = os.path.join(get_log_folder(plugin_name='nougat'), gen_time_str())
os.makedirs(dst)
nougat_with_timeout(f'nougat --out "{os.path.abspath(dst)}" "{os.path.abspath(fp)}"', os.getcwd())
res = glob.glob(os.path.join(dst,'*.mmd'))
if len(res) == 0:
raise RuntimeError("Nougat解析论文失败。")
return res[0]
def 解析PDF_基于NOUGAT(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
import copy
import tiktoken
TOKEN_LIMIT_PER_FRAGMENT = 1280
generated_conclusion_files = []
generated_html_files = []
DST_LANG = "中文"
for index, fp in enumerate(file_manifest):
chatbot.append(["当前进度:", f"正在解析论文,请稍候。(第一次运行时,需要花费较长时间下载NOUGAT参数)"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
fpp = NOUGAT_parse_pdf(fp)
with open(fpp, 'r', encoding='utf8') as f:
article_content = f.readlines()
article_dict = markdown_to_dict(article_content)
logging.info(article_dict)
prompt = "以下是一篇学术论文的基本信息:\n"
# title
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
# authors
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
# abstract
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
# command
prompt += f"请将题目和摘要翻译为{DST_LANG}。"
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
# 单线,获取文章meta信息
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt,
inputs_show_user=prompt,
llm_kwargs=llm_kwargs,
chatbot=chatbot, history=[],
sys_prompt="You are an academic paper reader。",
)
# 多线,翻译
inputs_array = []
inputs_show_user_array = []
# get_token_num
from request_llm.bridge_all import model_info
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
def break_down(txt):
raw_token_num = get_token_num(txt)
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
return [txt]
else:
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
# find a smooth token limit to achieve even seperation
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
token_limit_smooth = raw_token_num // count + count
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
for section in article_dict.get('sections'):
if len(section['text']) == 0: continue
section_frags = break_down(section['text'])
for i, fragment in enumerate(section_frags):
heading = section['heading']
if len(section_frags) > 1: heading += f' Part-{i+1}'
inputs_array.append(
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
)
inputs_show_user_array.append(
f"# {heading}\n\n{fragment}"
)
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[meta for _ in inputs_array],
sys_prompt_array=[
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
)
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
generated_conclusion_files.append(res_path)
ch = construct_html()
orig = ""
trans = ""
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
for i,k in enumerate(gpt_response_collection_html):
if i%2==0:
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
else:
gpt_response_collection_html[i] = gpt_response_collection_html[i]
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
final.extend(gpt_response_collection_html)
for i, k in enumerate(final):
if i%2==0:
orig = k
if i%2==1:
trans = k
ch.add_row(a=orig, b=trans)
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
html_file = ch.save_file(create_report_file_name)
generated_html_files.append(html_file)
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
class construct_html():
def __init__(self) -> None:
self.css = """
.row {
display: flex;
flex-wrap: wrap;
}
.column {
flex: 1;
padding: 10px;
}
.table-header {
font-weight: bold;
border-bottom: 1px solid black;
}
.table-row {
border-bottom: 1px solid lightgray;
}
.table-cell {
padding: 5px;
}
"""
self.html_string = f'<!DOCTYPE html><head><meta charset="utf-8"><title>翻译结果</title><style>{self.css}</style></head>'
def add_row(self, a, b):
tmp = """
<div class="row table-row">
<div class="column table-cell">REPLACE_A</div>
<div class="column table-cell">REPLACE_B</div>
</div>
"""
from toolbox import markdown_convertion
tmp = tmp.replace('REPLACE_A', markdown_convertion(a))
tmp = tmp.replace('REPLACE_B', markdown_convertion(b))
self.html_string += tmp
def save_file(self, file_name):
with open(os.path.join(get_log_folder(), file_name), 'w', encoding='utf8') as f:
f.write(self.html_string.encode('utf-8', 'ignore').decode())
return os.path.join(get_log_folder(), file_name)
|