Spaces:
Sleeping
Sleeping
File size: 7,534 Bytes
a1fe67d 5c0a088 a1fe67d 5c0a088 a1fe67d 5c0a088 a1fe67d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import time, requests, json
from multiprocessing import Process, Pipe
from functools import wraps
from datetime import datetime, timedelta
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, get_conf
model_name = '千帆大模型平台'
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
def cache_decorator(timeout):
cache = {}
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
key = (func.__name__, args, frozenset(kwargs.items()))
# Check if result is already cached and not expired
if key in cache:
result, timestamp = cache[key]
if datetime.now() - timestamp < timedelta(seconds=timeout):
return result
# Call the function and cache the result
result = func(*args, **kwargs)
cache[key] = (result, datetime.now())
return result
return wrapper
return decorator
@cache_decorator(timeout=3600)
def get_access_token():
"""
使用 AK,SK 生成鉴权签名(Access Token)
:return: access_token,或是None(如果错误)
"""
# if (access_token_cache is None) or (time.time() - last_access_token_obtain_time > 3600):
BAIDU_CLOUD_API_KEY, BAIDU_CLOUD_SECRET_KEY = get_conf('BAIDU_CLOUD_API_KEY', 'BAIDU_CLOUD_SECRET_KEY')
if len(BAIDU_CLOUD_SECRET_KEY) == 0: raise RuntimeError("没有配置BAIDU_CLOUD_SECRET_KEY")
if len(BAIDU_CLOUD_API_KEY) == 0: raise RuntimeError("没有配置BAIDU_CLOUD_API_KEY")
url = "https://aip.baidubce.com/oauth/2.0/token"
params = {"grant_type": "client_credentials", "client_id": BAIDU_CLOUD_API_KEY, "client_secret": BAIDU_CLOUD_SECRET_KEY}
access_token_cache = str(requests.post(url, params=params).json().get("access_token"))
return access_token_cache
# else:
# return access_token_cache
def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
conversation_cnt = len(history) // 2
if system_prompt == "": system_prompt = "Hello"
messages = [{"role": "user", "content": system_prompt}]
messages.append({"role": "assistant", "content": 'Certainly!'})
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index] if history[index]!="" else "Hello"
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1] if history[index]!="" else "Hello"
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "": continue
if what_gpt_answer["content"] == timeout_bot_msg: continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
return messages
def generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
BAIDU_CLOUD_QIANFAN_MODEL, = get_conf('BAIDU_CLOUD_QIANFAN_MODEL')
url_lib = {
"ERNIE-Bot": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions" ,
"ERNIE-Bot-turbo": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant" ,
"BLOOMZ-7B": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/bloomz_7b1",
"Llama-2-70B-Chat": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/llama_2_70b",
"Llama-2-13B-Chat": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/llama_2_13b",
"Llama-2-7B-Chat": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/llama_2_7b",
}
url = url_lib[BAIDU_CLOUD_QIANFAN_MODEL]
url += "?access_token=" + get_access_token()
payload = json.dumps({
"messages": generate_message_payload(inputs, llm_kwargs, history, system_prompt),
"stream": True
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload, stream=True)
buffer = ""
for line in response.iter_lines():
if len(line) == 0: continue
try:
dec = line.decode().lstrip('data:')
dec = json.loads(dec)
incoming = dec['result']
buffer += incoming
yield buffer
except:
if ('error_code' in dec) and ("max length" in dec['error_msg']):
raise ConnectionAbortedError(dec['error_msg']) # 上下文太长导致 token 溢出
elif ('error_code' in dec):
raise RuntimeError(dec['error_msg'])
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
⭐多线程方法
函数的说明请见 request_llm/bridge_all.py
"""
watch_dog_patience = 5
response = ""
for response in generate_from_baidu_qianfan(inputs, llm_kwargs, history, sys_prompt):
if len(observe_window) >= 1:
observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
⭐单线程方法
函数的说明请见 request_llm/bridge_all.py
"""
chatbot.append((inputs, ""))
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
yield from update_ui(chatbot=chatbot, history=history)
# 开始接收回复
try:
for response in generate_from_baidu_qianfan(inputs, llm_kwargs, history, system_prompt):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
except ConnectionAbortedError as e:
from .bridge_all import model_info
if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'],
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
yield from update_ui(chatbot=chatbot, history=history, msg="异常") # 刷新界面
return
# 总结输出
response = f"[Local Message]: {model_name}响应异常 ..."
if response == f"[Local Message]: 等待{model_name}响应中 ...":
response = f"[Local Message]: {model_name}响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history) |